PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of thermal diffusion on MHD radiating flow in presence of Cu-nanoparticles, Casson fluid and angle of inclination

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study numerical solutions for magnetohydrodynamic transfer, thermal and mass instability, free convection flow through the plate before Casson fluid, heat dissipation, thermal radiation, heat sink, chemical reaction, tilt angle, and saturated porous medium were described. The effectiveness of this study is to analyze the effect of heat diffusion, Casson fluid, the angle of interest on the flow phenomenon of Cu-nanoparticles in the presence of thermal radiation, heat source/heat sink, destructive reaction, heat transfer and mass transfer in a simple way. The finite difference method was used to solve the governing equations which are the added partial differential equations. The effects of different material parameters on velocity, temperature and concentration profiles are explained using graphs and tables. The results are compared with previously published papers and a very good agreement is found. In the boundary layer region, fluid velocity decreases with the increasing values of magnetic field parameter, heat source/sink, Casson fluid, angle of inclination and thermal radiation parameter for Cu-nanoparticles. Also it is noticed that the solutal boundary layer thickness decreases with an increase in the chemical reaction parameter. It is because chemical molecular diffusivity reduces for higher values of Kr.
Rocznik
Strony
43--58
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Research Scholar, KLEF, Guntur, Andhra Pradesh State, India
  • Department of Mathematics, Sreenidhi Institute of Science and Technology Hyderabad, Telangana State, India
  • Department of Mathematics, KLEF, Guntur, Andhra Pradesh State, India
autor
  • Department of Mathematics, Bharath Institute of Engineering and Technology Hyderabad, Telangana State, India
Bibliografia
  • [1] Anbuchezhian, N., Srinivasan, K., Chandrasekaran, K., & Kandasamy, R. (2012). Thermophoresis and Brownian motion effects on boundary layer flow of nanofluid in presence of thermal stratification due to solar energy. Applied Mathematics and Mechanics, 33, 765-780.
  • [2] Hayat, T., Qayyum, S., Imtiaz, M., & Alsaedi, A. (2016). Comparative study of silver and copper water nanofluids with mixed convection and nonlinear thermal radiation. International Journal of Heat and Transfer, 102, 723-732.
  • [3] Hayat, T., Qayyum, S., Alsaedi, A., & Shafiq, A. (2016). Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation. International Journal of Heat and Transfer, 103, 99-107.
  • [4] Akdag, U., Akcay, S., & Demiral, D. (2014). Heat transfer enhancement with laminar pulsating nanofluid flow in a wavy channel. International Journal of Communications in Heat Mass Transfer, 59, 17-23.
  • [5] Hayat, T., Shafiq, A., Imtiaz, M., & Alsaedi, A. (2016). Impact of melting phenomenon in the Falkner-Skan wedge flow of second grade nanofluid: a revised model. Journal of Molecular Liquids, 215, 664-670.
  • [6] Pattnaik, J.R., Dash, G.C., & Singh, S. (2017). Radiation and mass transfer effects on MHD flow through porous medium past an exponentially accelerated inclined plate with variable temperature. Ain Shams Engineering Journal, 8, 67-75.
  • [7] Krishna Prasad, D.V.V., Krishna Chaitanya, G.S., & Srinivasa Raju, R. (2019). Double diffusive effects on mixed convection Casson fluid flow past a wavy inclined plate in presence of Darcian porous medium. Results in Engineering Journal, 3, 100019.
  • [8] Srinivasa Raju, R., Jithender Reddy, G., Anil Kumar, M., & Rama Subba Reddy Gorla, (2019). Jeffrey Fluid Impact on MHD free convective flow past a vertically inclined plate with transfer effects: EFGM solutions. International Journal of Fluid Mechanics Research, 46(3), 239-260.
  • [9] Sarada, K., Malleswari, D., & Srinivasa Raju, R. (2019). Heat and mass transfer effects on chemical reacting fluid flow past, An exponentially accelerated vertical plate. AIP Conference Proceedings Journal, 2142, 170005-1-170005-5.
  • [10] Jitthender Reddy, G., Srinivasa Raju, R., & Anand Rao, J. (2018). Influence of viscous dissipation on unsteady MHD natural convective flow of Casson fluid over an oscillating vertical plate via FEM. Ain Shams Engineering Journal, 9, 1907-1915.
  • [11] Srinivasa Raju, R. (2018). Unsteady MHD boundary layer flow of Casson fluid over an inclined surface embedded in a porous medium with thermal radiation and chemical reaction. Journal of Nano Fluids, 7(4), 694-703.
  • [12] Rafique, K., Anwar, M.I., Misiran, M., Khan, I., Seikh, A.H., Sherif, E.S.M., & Nisar, K.S. (2019). Brownian motion and thermophoretic diffusion effects on micropolar type nanofluid flow with Soret and Dufour impacts over an inclined sheet: Keller-box simulations. Energies, 12(21), 4191.
  • [13] Rafique, K., Anwar, M.I., Misiran, M., Khan, I., Alharbi, S.O., Thounthong, P., & Nisar, K.S. (2019). Numerical solution of Casson nanofluid flow over a nonlinear inclined surface with Soret and Dufour effects by Keller-box method. Frontiers in Physics, 7(139), DOI: 10.3389/fphy.
  • [14] Rafique, K., Anwar, M.I., Misiran, M., Khan, I., Alharbi, S.O., Thounthong, P., & Nisar, K.S. (2019). Keller-box analysis of Buongiorno model with Brownian and thermophoretic diffusion for Casson nanofluid over an inclined surface. Symmetry, 11(11), 1370.
  • [15] Rafique, K., Anwar, M.I., Misiran, M., Khan, I., Seikh, A.H., Sherif, E.S.M., & Nisar, K.S. (2019). Numerical analysis with Keller-box scheme for stagnation point effect on flow of micropolar nanofluid over an inclined surface. Symmetry, 11(11), 1379.
  • [16] Anwar, M.I., Rafique, K., Misiran, M., & Shehzad, S.A. (2020). Numerical study of hydrodynamic flow of a Casson nanomaterial past an inclined sheet under porous medium. Heat Transfer-Asian Research, 49, 307-334, https://doi.org/10.1002/htj.21614.
  • [17] Cramer, K.R., & Pai, S.I. (1973). Magneto-fluid Dynamics for Engineers and Applied Physicists. NY: McGraw Hill Book Company.
  • [18] Hamilton, R.L., & Crosser, O.K. (1962). Thermal conductivity of heterogeneous two component systems. I and EC Fundamentals, 1(3), 187-191.
  • [19] Sparrow, E.M., & Cess, R.D. (1966). Radiation Heat Transfer. Belmont, Calif.: Brooks/Cole.
  • [20] Omeshwar Reddy, V., Neelima, A., & Thiagarajan, S. (2019). Finite difference solutions of MHD natural convective Rivlin-ericksen fluid flow past a vertically inclined porous plate in presence of thermal diffusion, diffusion thermo, heat and mass transfer effects. International Journal of Applied Engineering Research, 14(3), 703-716.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63d7b436-a614-4121-947a-ec64c9140207
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.