PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Image Quality Assessment Using Edge Correlation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In literature, oriented filters are used for low-level vision tasks. In this paper, we propose use of steerable Gaussian filter in image quality assessment. Human visual system is more sensitive to multidirectional edges present in natural images. The most degradation in image quality is caused due to its edges. In this work, an edge based metric termed as steerable Gaussian filtering (SGF) quality index is proposed as objective measure for image quality assessment. The performance of the proposed technique is evaluated over multiple databases. The experimental result shows that proposed method is more reliable and outperform the conventional image quality assessment method.
Rocznik
Strony
99--107
Opis fizyczny
Bibliogr. 34 poz., il., wykr., tab.
Twórcy
autor
  • Department of Electrical Engineering, National Institute of Technology Silchar, Cachar, Assam, INDIA. Pin-788010
autor
  • Department of Electrical Engineering, National Institute of Technology Silchar, Cachar, Assam, INDIA. Pin-788010
autor
  • Department of Electrical Engineering, National Institute of Technology Silchar, Cachar, Assam, INDIA. Pin-788010
Bibliografia
  • [1] Z. Wang and A. C. Bovik, “A universal image quality index,” Signal Processing Letters, IEEE, vol. 9, no. 3. pp. 81–84, 2002.
  • [2] J. D. Ruikar, A. K. Sinha, and S. Chaudhury, “Review of Image Enhancement Techniques,” in International Conference on Information Technology in Signal and Image Processing - itSIP, p. 2013.
  • [3] Q. Huynh-Thu and M. Ghanbari, “Scope of validity of PSNR in image/video quality assessment,” Electronics Letters, vol. 44, no. 13. pp. 800–801, 2008.
  • [4] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4. pp. 600–612, 2004.
  • [5] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” Signals, Systems and Computers, 2004. Conference Record of the Thirty-Seventh Asilomar Conference on, vol. 2. pp. 1398–1402 Vol.2, 2003.
  • [6] M. P. Sampat, Z. Wang, S. Gupta, A. C. Bovik, and M. K. Markey, “Complex Wavelet Structural Similarity: A New Image Similarity Index,” IEEE Transactions on Image Processing, vol. 18, no. 11. pp. 2385–2401, 2009.
  • [7] K. Egiazarian, J. Astola, V. Lukin, F. Battisti, and M. Carli, “New full-reference quality metrics based on HVS,” 2006.
  • [8] N. Ponomarenko, F. Silvestri, K. Egiazarian, M. Carli, J. Astola, and V. Lukin, “On between-coefficient contrast masking of DCT basis functions,” in Proceedings of the Third International Workshop on Video Processing and Quality Metrics, 2007, vol. 4.
  • [9] D. M. Chandler and S. S. Hemami, “VSNR: A Wavelet-Based Visual Signal-to-Noise Ratio for Natural Images,” IEEE Transactions on Image Processing, vol. 16, no. 9. pp. 2284–2298, 2007.
  • [10] N. Damera-Venkata, T. D. Kite, W. S. Geisler, B. L. Evans, and A. C. Bovik, “Image quality assessment based on a degradation model,” IEEE Transactions on Image Processing, vol. 9, no. 4. pp. 636–650, 2000.
  • [11] H. R. Sheikh, A. C. Bovik, and G. de Veciana, “An information fidelity criterion for image quality assessment using natural scene statistics,” IEEE Transactions on Image Processing, vol. 14, no. 12. pp. 2117–2128, 2005.
  • [12] K. Seshadrinathan and A. Bovik, “Automatic prediction of perceptual quality of multimedia signals—a survey,” Multimed. Tools Appl., vol. 51, no. 1, pp. 163–186, 2011.
  • [13] W. Lin and C.-C. Jay Kuo, “Perceptual visual quality metrics: A survey,” J. Vis. Commun. Image Represent., vol. 22, no. 4, pp. 297–312, May 2011.
  • [14] F. Zhang, S. Li, L. Ma, and K. N. Ngan, “Limitation and challenges of image quality measurement,” 2010, vol. 7744, pp. 774402–774408.
  • [15] D. M. Chandler, “Seven challenges in image quality assessment: past, present, and future research,” ISRN Signal Process., vol. 2013, 2013.
  • [16] A. Moorthy and A. Bovik, “Visual quality assessment algorithms: what does the future hold?,” Multimed. Tools Appl., vol. 51, no. 2, pp. 675–696, 2011.
  • [17] M. P. Eckert and A. P. Bradley, “Perceptual quality metrics applied to still image compression,” Signal Processing, vol. 70, no. 3, pp. 177–200, Nov. 1998.
  • [18] X. Zhang, X. Feng, W. Wang, and W. Xue, “Edge strength similarity for image quality assessment,” IEEE Signal Process. Lett., vol. 20, no. 4, pp. 319–322, 2013.
  • [19] W. T. Freeman and E. H. Adelson, “The design and use of steerable filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 9. pp. 891–906, 1991.
  • [20] E. P. Simoncelli and W. T. Freeman, “The steerable pyramid: a flexible architecture for multi-scale derivative computation,” International Conference on Image Processing, 1995. Proceedings., vol. 3. pp. 444–447 vol.3, 1995.
  • [21] E. P. Simoncelli and H. Farid, “Steerable wedge filters for local orientation analysis,” Image Processing, IEEE Transactions on, vol. 5, no. 9. pp. 1377–1382, 1996.
  • [22] L. Jacques, L. Duval, C. Chaux, and G. Peyré, “A panorama on multiscale geometric representations, intertwining spatial, directional and frequency selectivity,” Signal Processing, vol. 91, no. 12, pp. 2699–2730, Dec. 2011.
  • [23] J. J. Yokono and T. Poggio, “Oriented filters for object recognition: an empirical study,” Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings pp. 755–760, 2004.
  • [24] M. N. Do and M. Vetterli, “Rotation invariant texture characterization and retrieval using steerable wavelet-domain hidden Markov models,” Multimedia, IEEE Transactions on, vol. 4, no. 4. pp. 517–527, 2002.
  • [25] E. C. Larson and D. M. Chandler, “Categorical image quality (CSIQ) database,” [Online] http://vision. okstate. edu/csiq, 2010.
  • [26] A. Ninassi, P. Le Callet, and F. Autrusseau, “Subjective quality assessment-IVC database,” [online] http://www.irccyn.ec-nantes.fr/ivcdb/. 2006.
  • [27] N. Ponomarenko, O. Ieremeiev, V. Lukin, K. Egiazarian, L. Jin, J. Astola, B. Vozel, K. Chehdi, M. Carli, F. Battisti, and C.-C. J. Kuo, “Color image database TID2013: Peculiarities and preliminary results,” Visual Information Processing (EUVIP), 2013 4th European Workshop on. pp. 106–111, 2013.
  • [28] N. Ponomarenko, O. Ieremeiev, V. Lukin, L. Jin, K. Egiazarian, J. Astola, B. Vozel, K. Chehdi, M. Carli, F. Battisti, and C.-C. J. Kuo, “A New Color Image Database TID2013: Innovations and Results,” in Advanced Concepts for Intelligent Vision Systems SE - 36, vol. 8192, J. Blanc-Talon, A. Kasinski, W. Philips, D. Popescu, and P. Scheunders, Eds. Springer International Publishing, 2013, pp. 402–413.
  • [29] Z. Wang and Q. Li, “Information Content Weighting for Perceptual Image Quality Assessment,” IEEE Transactions on Image Processing, vol. 20, no. 5. pp. 1185–1198, 2011.
  • [30] “Final Report From the Video Quality Experts Group on the Validation of Objective Models of Video Quality Assessment 2000.” VQEG.
  • [31] L. Zhang, D. Zhang, X. Mou, and D. Zhang, “FSIM: A Feature Similarity Index for Image Quality Assessment,”, IEEE Transactions on Image Processing, vol. 20, no. 8. pp. 2378–2386, 2011.
  • [32] Y. Horita, K. Shibata, Y. Kawayoke, and Z. M. P. Sazzad, “MICT Image quality evaluation database.” 2011.
  • [33] H. R. Sheikh, Z. Wang, L. Cormack, and A. C. Bovik, “LIVE image quality assessment database release 2.” 2005.
  • [34] N. Ponomarenko and K. Egiazarian, “Tampere image database 2008 TID2008.” Available, 2009.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63d6ba8f-ef46-47ea-8ef7-e9eebd14594b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.