PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Tungsten Sulfide Nanostructures Added to Metalworking Fluids on Tribological Properties of Steel Surface Layer

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ nanostruktur siarczku wolframu (IV) dodawanych do cieczy obróbkowych na właściwości warstwy wierzchniej stali
Języki publikacji
EN
Abstrakty
EN
The paper examines the potential of tungsten sulfide nanostructures as a prospective, safe alternative to currently used additives for classical cutting fluids by analysing their effect on steel tribological systems. The tribological tests were performed using a ball-on-disc tribometer. The samples used were discs made of C 45 steel; balls made of 100Cr6 steel were used as counter samples. The lubricants used in the research included SN oil, SN + WS2, HFN oil, and HFN + WS2. A confocal microscope operating in the interferometric mode was used to analyse the geometrical structure of the samples before and after the friction tests. Observations of the wear marks on the samples and counter-samples were carried out using a scanning microscope. The chemical composition on the surfaces of the friction pairs was also determined. The obtained test results indicated that the SN + WS2 and HFN + WS2 lubricant reduced the coefficient of friction and wear in the tested steel friction pairs.
PL
W pracy przedstawiono wpływ aktywnych dodatków w postaci krystalicznych nanostruktur siarczku wolframu (IV) w klasycznych płynach obróbkowych na właściwości stalowych układów tribologicznych. Badania tribologiczne przeprowadzono przy użyciu tribometru typu kula-tarcza. W parze trącej wykorzystano tarcze wykonane ze stali C45 oraz kule wykonane ze stali 100Cr6. W badaniach zastosowano olej mineralny SN, olej SN wraz z nanocząstkami siarczku wolframu (IV) SN+ WS 2, komercyjny olej obróbkowy HFN i olej obróbkowy HFN wraz z nanocząstkami siarczku wolframu (IV) HFN+ WS 2. Do analizy struktury geometrycznej par trących przed i po badaniach tribologicznych wykorzystano mikroskop konfokalny. Obserwacje śladów zużycia w węźle tarcia przeprowadzono przy użyciu skaningowego mikroskopu elektronowego. Określono także skład chemiczny na powierzchniach par trących. Uzyskane wyniki badań wykazały, że dodatek w postaci nanostruktur WS2 w olejach zarówno SN, jak i HFN spowodował zmniejszenie współczynnika tarcia i zużycia badanych stalowych współpracujących tarciowo par.
Czasopismo
Rocznik
Tom
Strony
47--58
Opis fizyczny
Bibliogr. 29 poz., fot., rys., tab., wykr., wz.
Twórcy
  • Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz; Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz; FUCHS OIL CORPORATION (PL) Sp. z o.o., Kujawska 102, 44-101 Gliwice, Poland
  • FUCHS OIL CORPORATION (PL) Sp. z o.o., Kujawska 102, 44-101 Gliwice, Poland
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Tysiąclecia Państwa Polskiego 7 Ave., 25-314 Kielce, Poland
autor
  • Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Tysiąclecia Państwa Polskiego 7 Ave., 25-314 Kielce, Poland
  • Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz
  • Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz
  • Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz
  • Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz
Bibliografia
  • 1. Janecki H. P. Chemia warstw wierzchnich w tribologii, Æ Academic Publishing, USA, 2016.
  • 2. Chen Y., Renner P., Liang H. Dispersion of Nanoparticles in Lubricating Oil: A Critical Review, Lubricants 7, 2019, pp. 1–21.
  • 3. Mosleh M., Atnafu N. D., Belk J. H., Nobles, O. M. Modification of sheet metal forming fluids with dispersed nanoparticles for improved lubrication, Wear 267, 2009, pp. 1220–1225.
  • 4. Peña-Parás L., Sánchez-Fernández J. A., Martínez C. R., Ontiveros J. A., Saldívar K. I, Urbina L. M., Arias M. I., García-Pineda P., Castaños B.: Evaluation of Anti-Wear Properties of Metalworking Fluids Enhanced with Halloysite Nanotubes, Applied Sciences 7, 2017, p. 1019.
  • 5. Uflyand I. E., Zhinzhilo V. A., Burlakova V. E.: Metal-containing nanomaterials as lubricant additives: State-of-the-art and future development, Friction 7, 2019, pp. 93–116.
  • 6. Anisimov E., Irtegov Y. V., Druzyanova V., Burtsev N., Khaskelberg M. B., Use of zinc oxide nanopowder as an additive in a tribotechnical composite based on refractory metal disulfide, Key Engineering Materials 685 (2016) pp. 539–542.
  • 7. Sravan Kumar A., Deb S., Paul S.: Tribological characteristics and micromilling performance of nanoparticle enhanced water based cutting fluids in minimum quantity lubrication, Journal of Manufacturing Processes 56, 2020, pp. 766–776.
  • 8. Kajdas C., Hiratsuka K.: Tribochemistry, tribocatalysis, and the negative-ion-radical action mechanism, Proceedings of the Institution of Mechanical Engineers Part I: Journal of Engineering Tribology 223, 2009, p. 827.
  • 9. Kajdas C.: Tribochemistry of selected ceramic materials, Solid State Phenomena 113, 2006, pp. 339–347.
  • 10. Melnikov V. G., Energy of Activation of Tribochemical Reactions of Greases in the Rolling Friction Zone, Protection of Metals 39, 2003, pp. 543–550.
  • 11. Castle R., Arrowsmith S.: Modelling lubricant related fuel economy in heavy duty diesel engines: Tribology Research and Design for Engineering Systems, Tribology Series, Elsevier, Amsterdam 41, 2003, pp. 491–500.
  • 12. Barret C.: Synthetic Lubricants: Perception vs. Reality, Tribology & Lubrication Technology 21, 2007, pp. 28–35.
  • 13. Dowson D., Priest M., Dalmaz G., Lubrecht A. A.: Tribological research and design for Engineering systems, Elsevier, Amsterdam, 2003.
  • 14. Ren S., Yang S., Zhao Y.: Preparation and Tribological Studies of C60 Thin Film Chemisorbed on a Functional Polymer Surface, Langmuir 20, 2004, pp. 3601–3605.
  • 15. Shchukin E. D., Savenko V I., Malkin A. I.: The Effect of a Surface-Active Medium on the Mechanical Stability and Damageability of a Solid Surface. Review, Protection of Metals and Physical Chemistry of Surfaces 49, 2013, pp. 40–56.
  • 16. Rebinder P. A. in.: VI S"ezd russkikh fizikov (VI Congress of Russian Physicists), Moscow: OGIZ, 1928, p. 29.
  • 17. Irtegov Y., An V., Machekhina K., Lemachko N.: Influence of copper nanoparticles on tribological properties of nano-lamellar tungsten disulfide, Key Engineering Materials 712, 2016, pp. 133–136.
  • 18. An V., Irtegov Y., Anisimov E., Druzyanova V., Burtsev N., Khaskelberg M.: Tribological properties of nanolamellar tungsten disulfide doped with zinc oxide nanoparticles, SpringerPlus 4, 2015, p. 673.
  • 19. Zhao J., He Y., Wang Y., Wang W., Yan L., Luo J.: An investigation on the tribological properties of multilayer graphene and MoS2 nanosheets as additives used in hydraulic applications, Tribology International 97, 2016, pp. 14–20.
  • 20. Sahoo R. R., Biswas S. K.: Deformation and friction of MoS2 particles in liquid suspensions used to lubricate sliding contact, Thin Solid Films 518, 2010, pp. 5995–6005.
  • 21. Goldstein J.: Scanning Electron Microscopy and X-ray microanalysis, wyd. 3, Springer, Nowy Jork, 2003.
  • 22. Kałdoński T. J., Gryglewicz Ł., Stańczyk M., Kałdoński T.: Investigations on lubricity and surface properties of selected perfluoropoliether oils, Journal of KONES Powertrain and Transport 1, 2011, pp. 199–212.
  • 23. KSV SIGMA 701 Apparatus. Operation Manual – surface/interfacial tension, DCA. Meter, KSV Instruments Ltd. Helsinki. Finland, http://www.nlab.pl/KSV/KSV_Sigma700-701.pdf; 2023 10 March 2023.
  • 24. Kim K. H., Park S. D., Bae Ch. M.: New Approach to the Soaking Condition of 100Cr6 High-Carbon Chromium Bearing Steel, Metals and Materials International 20, 2014, pp. 207–213.
  • 25. Cichomski M., Borkowska E., Prowizor M., Batory D., Jedrzejczak A., Dudek M.: The Effect of Physicochemical Properties of Perfluoroalkylsilanes Solutions on Microtribological Features of Created Self-Assembled Monolayers, Materials 13, 2020, p. 3357.
  • 26. Kong L, Sun J, Bao Y.: Preparation, characterization and tribological mechanism of nanofluids. RSC Adv 7, 2017, p. 12599.
  • 27. Amanov A., Pyun Y. S., Kim J. H., Sasaki S.: The usability and preliminary effectiveness of ultrasonic nanocrystalline surface modification technique on surface properties of silicon carbide, Applied Surface Science 311, 2014, pp. 448–460.
  • 28. Wan G. T. Y., Meijer D., Jacobson B. O., Lankamp H.: Use of Bismuth Compounds in Extreme Pressure Grease Lubricant Compositions For Rolling Bearing Applications With Extended Service Life, U. S. Patent No. 6,090,755, U. S. Patent and Trademark Office. Washington, DC 2000.
  • 29. Kowalczyk J., Madej M., Dzięgielewski W., Kulczycki A., Żółty M., Ozimina D.: Tribochemical Interactions between Graphene and ZDDP in Friction Tests for Uncoated and W-DLC-Coated HS6-5- 2C Steel, Materials 14, 2021, pp. 1–16.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63d68400-719d-4ee5-9961-02eb17ca0a95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.