Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The present study is conducted to investigate and to provide a better understanding of the heat treatment T4 (solution treatment at 505, 515 and 525°C, holding time 2, 4, 8,16 and 32 hours, then quenching in warm water in the range from 40°C and natural aging at room temperature during 24 hours) on the microstructure (morphology of eutectic Si, morphology of intermetallic Fe- and Cu-rich phases) and on mechanical properties (tensile strength and Brinell hardness) of recycled (secondary) AlSi9Cu3 cast alloy. Design/methodology/approach: Metallographic samples were selected from tensile specimens (after testing) and prepared by standard metallographic procedures (wet ground, polished with diamond pastes, finally polished with commercial fine silica slurry (STRUERS OP-U) and etched by Dix-Keller, HNO3 or H2SO4 (standard etching) or HCl (deep etching in order to reveal the three-dimensional morphology of phases). The microstructure was studied using an optical microscope Neophot 32 and SEM observation with EDX analysis using scanning electron microscope VEGA LMU II linked to the energy dispersive X-ray spectroscopy (EDX analyser Brucker Quantax). Hardness measurement was performed by a Brinell hardness tester with a load of 62.5 kp (1 kp = 9.807 N), 2.5 mm diameter ball and a dwell time of 15 s. Findings: The results indicate that increasing solution treatment temperature results in spheroidization of eutectic Si, gradual disintegration of iron rich intermetallic phases on base Al15(FeMn)3Si2, dissolution but also melting of intermetallic phases on base Al-Al2Cu-Si. Optimal solution treatment (515°C/4 hours) most improves mechanical properties. Further increases of solution time, leads to alloy elongations, while both, the tensile strength continuously drop. Practical implications: The present study is a part of larger research project, which was conducted to investigate and to provide a better understanding microstructure, heat treatment and mechanical properties of recycled (secondary) Al-Si cast alloy. Originality/value: The paper contributes to better understanding effect of the T4 heat treatment on the microstructure (morphology of eutectic silicon and intermetallic phases) and mechanical properties (tensile strength and Brinell hardness) of recycled cast alloy.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
19--25
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Department of Materials Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
autor
- Department of Materials Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
autor
- Department of Materials Engineering, University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovak Republic
autor
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology,ul. Konarskiego 18a, 44-100 Gliwice, Poland
autor
- Institute of Engineering Materials and Biomaterials, Silesian University of Technology,ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
- [1] C.T. Rios, et al., Intermetallic compounds in the Al-Si-Cu system, Acta Microscopia 12 (2003) 77-82.
- [2] S.K. Das, J.A.S. Green, Aluminium industry and climate change - Assessment and responses, JOM 62/2 (2010) 27-31.
- [3] G. Mrówka-Nowotnik, J. Sieniawski, Microstructure and mechanical properties of C355.0 cast aluminium alloy, Journal of Achievements in Materials and Manufacturing Engineering 47/2 (2011) 85-94.
- [4] E. Tillová, M. Chalupová, Štruktúrna analýza zliatin Al-Si, EDIS Žilina, Žilina, 2009 (in Slovak).
- [5] L.A. Dobrzański, R. Maniara, J.H. Sokołowski, The effect of cast Al-Si-Cu alloy solidification rate on alloy thermal characteristics, Journal of Achievements in Materials and Manufacturing Engineering 17/1-2 (2006) 217-220.
- [6] J.A. Taylor, The effect of iron in Al-Si casting alloys, Proceedings of the International 35th Australian Foundry Institute National Conference, Adelaide, 2004,148-157.
- [7] S. Seifedine, S. Johansson, I. Svensson, The influence of cooling rate and manganese content on the P-Al5FeSi phase formation and mechanical properties of Al-Si- based alloys, Materials Science and Engineering A 490 (2008) 385-390.
- [8] A.M. Samuel, F.H. Samuel, H.W. Doty, Observation on the formation B-Al5FeSi phase in 319 type Al-Si alloys, Journal of Materials Science 31 (1996) 5529-5539.
- [9] M.A. Moustafa, Effect of iron content on the formation of B-Al5FeSi and porosity in Al-Si eutectic alloys, Journal of Materials Processing Technology 209 (2009) 605-610.
- [10] M. Krupiński, K. Labisz, Z. Rdzawski, M. Pawlyta, Cooling rate and chemical composition influence on structure of Al-Si-Cu alloys, Journal of Achievements in Materials and Manufacturing Engineering 45/1 (2011) 13-22.
- [11] E. Tillová, M. Panušková, Effect of solution treatment on intermetallic phase’s morphology in AlSi9Cu3 cast alloy, Materials Engineering 14 (2007) 73-76.
- [12] M. Panušková, E. Tillová, M. Chalupová, Relation between mechanical properties and microstructure of cast aluminum alloy AlSi9Cu3, Strength of Materials 1 (2008) 109-112.
- [13] E. Tillová, M. Chalupová, M. Panušková, Structural analyses of the Al-Si-Cu alloys, Material Engineering 13 (2006) 25-30.
- [14] F.H. Samuel, Incipient melting of Al5Mg8Si6Cu2 and Al2Cu intermetallics in unmodified and strontium-modified Al-Si-Cu-Mg (319) alloys during solution heat treatment, Journal of Materials Science 33 (1998) 2283-2297.
- [15] E. Tillová, M. Panušková, M. Chalupová, Metallographische analyse von Al-Si-Cu Gusslegierungen, Druckguss-praxis 4 (2007) 108-112.
- [16] A.M. Samuel, F.H. Samuel, Effect of alloying elements and dendrite arm spacing on the microstructure and hardness of an Al-Si-Cu-Mg-Fe-Mn (380) aluminium die-casting alloy, Journal of Materials Science 30 (1995) 1698-1708.
- [17] M. Wierzbińska, G. Mrówka-Nowotnik, Identification of phase composition of AlSi5Cu2Mg aluminium alloy in T6 condition, Archives of Materials Science and Engineering 30/2 (2008) 85-88.
- [18] M. Krupiński, K. Labisz, L.A. Dobrzański, Structure investigation of the Al-Si-Cu alloy using derivative thermo analysis, Journal of Achievements in Materials and Manufacturing Engineering 34/1 (2009) 47-54.
- [19] R. Maniara, L.A. Dobrzański, M. Krupiński, J.H. Sokołowski, The effect of copper concentration on the microstructure of Al-Si-Cu alloys, Archives of Foundry Engineering 7/2 (2007) 119-124.
- [20] K. Labisz, M. Krupiński, L.A. Dobrzański, Phases morphology and distribution of the Al-Si-Cu alloy, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 309-316.
- [21] E. Tillová, M. Chalupová, Effect of solution treatment on Intermetallic phase’s morphology in AlSi9Cu3 cast alloy, mettalurgija/METABK 47/3 (2008) 133-137.
- [22] R. Li, Solution heat treatment of 354 and 355 cast alloys, AFS Transaction 26 (1996) 777-783.
- [23] F. Paray, J.E. Gruzleski, Microstructure - mechanical property relationships in a 356 alloy, Part I, Microstructure, Cast Metals 7 (1994) 29-40.
- [24] L. Lasa, J.M. Rodriguez-Ibabe, Evolution of the main intermetallic phases in Al-Si-Cu-Mg casting alloys during solution treatment, Journal of Materials Science 39 (2004) 1343-1355.
- [25] M.A. Moustafa, F.H. Samuel, H.W. Doty, Effect of solution heat treatment and additives on the microstructure of Al-Si (A413.1) automotive alloys, Journal of Materials Science 38 (2003) 4507-4522.
- [26] E. Sjolander, S. Seifeddine, Optimisation of solution treatment of cast Al-Si-Cu alloys, Materials and Design 31 (2010) S44-S49.
- [27] P. Skočovský, E. Tillová, J. Belan, Influence of technological factors on eutectic silicon morphology in Al-Si alloys, Archiwes of Foundry Engineering 9/2 (2009) 169-172.
- [28] Guiqing Wang, Xiufang Bian, Weimin Wang, Junyan Zhang, Influence of Cu and minor elements on solution treatment of Al-Si-Cu-Mg cast alloys, Materials Letters 57 (2003) 4083-4087.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63d5c69f-5211-4f31-aa61-bd77f948389b