PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A comparison of axial fatigue strength of coarse and ultrafine grain commercially pure titanium produced by ECAP

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Commercially pure titanium (CP-Ti) has been recently used as metallic biomaterials due to excellent biocompatibility and specific strength. CP-Ti has less static and dynamic strength as compared to other metallic biomaterials. Processing by the equal channel angular pressing (ECAP) as one of the most effective severe plastic deformation (SPD) method could lead to an increase in the mechanical strength of materials, significantly. In this study, Grade 2 CP-Ti billet is inserted into Al-7075 casing, and is then deformed by ECAP, with the channel angle of 135°, through 3 passes at route BC and room temperature. The purpose of using casing is to attain higher deformation homogeneity and more material ductility in the billet. The microstructural analysis shows that the coarse grain (CG) CP-Ti is developed to ultra-fine grain (UFG) structures after ECAP. In order to investigate the static and dynamic strength of CG and UFG CP-Ti, the tensile and axial fatigue tests are conducted. The results represent that UFG CP-Ti has much more tensile and fatigue strength than CG CP-Ti, and it could be utilized as biomaterials for production of implants. Surface features of fatigue fracture are also investigated. It should be noted that the investigation of fatigue strength of UFG CP-Ti produced by ECAP at RT utilizing casing, has not been conducted so far.
Rocznik
Strony
755--767
Opis fizyczny
Bibliogr. 56 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
autor
  • Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
autor
  • Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
  • Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, P.O.B. 9177948944 Mashhad, Iran
Bibliografia
  • [1] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Ti based biomaterials, the ultimate choice for orthopaedic implants – a review, Prog. Mater. Sci. 54 (3) (2009) 397–425.
  • [2] H.J. Rack, J.I. Qazi, Titanium alloys for biomedical applications, Mater. Sci. Eng. C 26 (8) (2006) 1269–1277.
  • [3] P.S. Roodposhti, N. Farahbakhsh, A. Sarkar, K.L. Murty, Microstructural approach to equal channel angular processing of commercially pure titanium – a review, Trans. Nonferrous Met. Soc. China 25 (5) (2015) 1353–1366.
  • [4] Y.J. Chen, Y.J. Li, J.C. Walmsley, S. Dumoulin, P.C. Skaret, H.J. Roven, Microstructure evolution of commercial pure titanium during equal channel angular pressing, Mater. Sci. Eng. A 527 (3) (2010) 789–796.
  • [5] W. Pachla, M. Kulczyk, M. Sus-Ryszkowska, A. Mazur, K.J. Kurzydlowski, Nanocrystalline titanium produced by hydrostatic extrusion, J. Mater. Process. Technol. 205 (1) (2008) 173–182.
  • [6] O. Ertorer, T. Topping, Y. Li, W. Moss, E.J. Lavernia, Enhanced tensile strength and high ductility in cryomilled commercially pure titanium, Scr. Mater. 60 (7) (2009) 586–589.
  • [7] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (7) (2006) 881–981.
  • [8] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2) (2000) 103–189.
  • [9] F. Djavanroodi, H. Ahmadian, K. Koohkan, R. Naseri, Ultrasonic assisted-ECAP, Ultrasonics 53 (6) (2013) 1089–1096.
  • [10] F. Djavanroodi, H. Ahmadian, R. Naseri, K. Koohkan, M. Ebrahimi, Experimental investigation of ultrasonic assisted equal channel angular pressing process, Arch. Civil Mech. Eng. 16 (3) (2016) 249–255.
  • [11] M.R. Roshan, S.A. Jenabali Jahromi, R. Ebrahimi, Predicting the critical pre-aging time in ECAP processing of age-hardenable aluminum alloys, J. Alloys Compd. 509 (30) (2011) 7833–7839.
  • [12] M.H. Shaeri, F. Djavanroodi, M. Sedighi, S. Ahmadi, M.T. Salehi, S.H. Seyyedein, Effect of copper tube casing on strain distribution and mechanical properties of Al-7075 alloy processed by equal channel angular pressing, J. Strain Anal. Eng. Des. 48 (8) (2013) 512–521.
  • [13] R.B. Figueiredo, P.R. Cetlin, T.G. Langdon, The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys, Acta Mater. 55 (14) (2007) 4769–4779.
  • [14] S.L. Semiatin, D.P. DeLo, V.M. Segal, R.E. Goforth, N.D. Frey, Workability of commercial-purity titanium and 4340 steel during equal channel angular extrusion at cold-working temperatures, Metall. Mater. Trans. A 30 (5) (1999) 1425–1435.
  • [15] P.R. Cetlin, M.T.P. Aguilar, R.B. Figueiredo, T.G. Langdon, Avoiding cracks and inhomogeneities in billets processed by ECAP, J. Mater. Sci. 45 (17) (2010) 4561–4570.
  • [16] N.A. Krasil Nikov, Strength and ductility of copper subjected to Equal-Channel Angular Pressing with backpressure, Russ. Metall. Metally (Izv. Akad. Nauk SSSR Metallty) 3 (2005) 220–226.
  • [17] W.J. Kim, J.Y. Wang, Microstructure of the post-ECAP aging processed 6061 Al alloys, Mater. Sci. Eng. A 464 (1) (2007) 23–27.
  • [18] S. Zhang, Y.C. Wang, A.P. Zhilyaev, E. Korznikova, S. Li, G.I. Raab, T.G. Langdon, Effect of grain size on compressive behaviour of titanium at different strain rates, Mater. Sci. Eng. A 645 (2015) 311–317.
  • [19] Y.J. Chen, Y.J. Li, X.J. Xu, J. Hjelen, H.J. Roven, Novel deformation structures of pure titanium induced by room temperature equal channel angular pressing, Mater. Lett. 117 (2014) 195–198.
  • [20] A. Jäger, V. Gärtnerova, K. Tesař, Microstructure and anisotropy of the mechanical properties in commercially pure titanium after equal channel angular pressing with back pressure at room temperature, Mater. Sci. Eng. A 644 (2015) 114–120.
  • [21] R.B. Figueiredo, E.R.C. Barbosa, X. Zhao, X. Yang, X. Liu, P.R. Cetlin, T.G. Langdon, Improving the fatigue behavior of dental implants through processing commercial purity titanium by equal-channel angular pressing, Mater. Sci. Eng. A 619 (2014) 312–318.
  • [22] A. Medvedev, H.P. Ng, R. Lapovok, Y. Estrin, T.C. Lowe, V.N. Anumalasetty, Comparison of laboratory-scale and industrial-scale equal channel angular pressing of commercial purity titanium, Mater. Lett. 145 (2015) 308–311.
  • [23] S. Zhang, Y.C. Wang, A.P. Zhilyaev, D.V. Gunderov, S. Li, G.I. Raab, E. Korznikova, T.G. Langdon, Effect of temperature on microstructural stabilization and mechanical properties in the dynamic testing of nanocrystalline pure Ti, Mater. Sci. Eng. A 634 (2015) 64–70.
  • [24] E. Matykina, R. Arrabal, R.Z. Valiev, J.M. Molina-Aldareguia, P. Belov, I. Sabirov, Electrochemical anisotropy of nanostructured titanium for biomedical implants, Electrochim. Acta 176 (2015) 1221–1232.
  • [25] C.S. Meredith, A.S. Khan, The microstructural evolution and thermo-mechanical behavior of UFG Ti processed via equal channel angular pressing, J. Mater. Process. Technol. 219 (2015) 257–270.
  • [26] P. Rodriguez-Calvillo, J.M. Cabrera, Microstructure and mechanical properties of a commercially pure Ti processed by warm equal channel angular pressing, Mater. Sci. Eng. A 625 (2015) 311–320.
  • [27] X. Zhao, X. Yang, X. Liu, X. Wang, T.G. Langdon, The processing of pure titanium through multiple passes of ECAP at room temperature, Mater. Sci. Eng. A 527 (23) (2010) 6335–6339.
  • [28] F. Djavanroodi, M. Daneshtalab, M. Ebrahimi, A novel technique to increase strain distribution homogeneity for ECAPed materials, Mater. Sci. Eng. A 535 (2012) 115–121.
  • [29] Y. Li, H.P. Ng, H.D. Jung, H.E. Kim, Y. Estrin, Enhancement of mechanical properties of grade 4 titanium by equal channel angular pressing with billet encapsulation, Mater. Lett. 114 (2014) 144–147.
  • [30] I.P. Semenova, G.K. Salimgareeva, V.V. Latysh, T. Lowe, R.Z. Valiev, Enhanced fatigue strength of commercially pure Ti processed by severe plastic deformation, Mater. Sci. Eng. A 503 (1) (2009) 92–95.
  • [31] S.R. Agnew, A.Y. Vinogradov, S. Hashimoto, J.R. Weertman, Overview of fatigue performance of Cu processed by severe plastic deformation, J. Electron. Mater. 28 (9) (1999) 1038–1044.
  • [32] A. Vinogradov, S. Hashimoto, Fatigue of severely deformed metals, Adv. Eng. Mater. 5 (5) (2003) 351–358.
  • [33] H. Mughrabi, H.W. Höppel, M. Kautz, Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation, Scr. Mater. 51 (8) (2004) 807–812.
  • [34] Y. Estrin, A. Vinogradov, Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview, Int. J. Fatigue 32 (6) (2010) 898–907.
  • [35] W.J. Kim, C.Y. Hyun, H.K. Kim, Fatigue strength of ultrafine-grained pure Ti after severe plastic deformation, Scr. Mater. 54 (10) (2006) 1745–1750.
  • [36] A. Czerwinski, R. Lapovok, D. Tomus, Y. Estrin, A. Vinogradov, The influence of temporary hydrogenation on ECAP formability and low cycle fatigue life of CP titanium, J. Alloys Compd. 509 (6) (2011) 2709–2715.
  • [37] V.N. Anumalasetty, G. Colombo, G. McIntosh, Y. Mardakhayeva, D. Yu, Microstructure and mechanical properties of coarse and ultrafine grain titanium with different iron contents, in: PRICM: 8 Pacific Rim International Congress on Advanced Materials and Processing, Wiley Online Library, 2013 3265–3273.
  • [38] I.P. Semenova, A.V. Polyakov, G.I. Raab, T.C. Lowe, R.Z. Valiev, Enhanced fatigue properties of ultrafine-grained Ti rods processed by ECAP-Conform, J. Mater. Sci. 47 (22) (2012) 7777–7781.
  • [39] C.Y. Hyun, H.K. Kim, The comparison of yield and fatigue strength dependence on grain size of pure Ti produced by severe plastic deformation, Rev. Adv. Mater. Sci. 28 (2011) 69–73.
  • [40] R.Z. Valiev, I.P. Semenova, V.V. Latysh, A.V. Shcherbakov, E.B. Yakushina, Nanostructured titanium for biomedical applications: new developments and challenges for commercialization, Nanotechnol. Russia 3 (9–10) (2008) 593–601.
  • [41] I.P. Semenova, R.Z. Valiev, E.B. Yakushina, G.H. Salimgareeva, T.C. Lowe, Strength and fatigue properties enhancement in ultrafine-grained Ti produced by severe plastic deformation, J. Mater. Sci. 43 (23–24) (2008) 7354–7359.
  • [42] I. Semenova, Strength and high fatigue properties of ultrafine-grained titanium rods produced by severe plastic deformation, Russian Metall. (Metally) 2010 (9) (2010) 831–836.
  • [43] I.P. Semenova, G.K. Salimgareeva, V.V. Latysh, S.A. Kunavin, R.Z. Valiev, Fatigue resistance of titanium with ultrafine-grained structure, Met. Sci. Heat Treat. 51 (1) (2009) 87–91.
  • [44] T. Niendorf, D. Canadinc, H.J. Maier, I. Karaman, The role of grain size and distribution on the cyclic stability of titanium, Scr. Mater. 60 (5) (2009) 344–347.
  • [45] A.Y. Vinogradov, V.V. Stolyarov, S. Hashimoto, R.Z. Valiev, Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation, Mater. Sci. Eng. A 318 (1) (2001) 163–173.
  • [46] Z. Horita, M. Furukawa, M. Nemoto, T.G. Langdon, Development of fine grained structures using severe plastic deformation, Mater. Sci. Technol. 16 (11–12) (2000) 1239–1245.
  • [47] C.T. Wang, A.G. Fox, T.G. Langdon, Microstructural evolution in ultrafine-grained titanium processed by high-pressure torsion under different pressures, J. Mater. Sci. 49 (19) (2014) 6558–6564.
  • [48] V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, R.Z. Valiev, Influence of ECAP routes on the microstructure and properties of pure Ti, Mater. Sci. Eng. A 299 (1) (2001) 59–67.
  • [49] S.N. Alhajeri, N. Gao, T.G. Langdon, Hardness homogeneity on longitudinal and transverse sections of an aluminum alloy processed by ECAP, Mater. Sci. Eng. A 528 (10) (2011) 3833–3840.
  • [50] Y. Zhang, R.B. Figueiredo, S.N. Alhajeri, J.T. Wang, N. Gao, T.G. Langdon, Structure and mechanical properties of commercial purity titanium processed by ECAP at room temperature, Mater. Sci. Eng. A 528 (25) (2011) 7708–7714.
  • [51] K. Hajizadeh, B. Eghbali, K. Topolski, K.J. Kurzydlowski, Ultra-fine grained bulk CP-Ti processed by multi-pass ECAP at warm deformation region, Mater. Chem. Phys. 143 (3) (2014) 1032–1038.
  • [52] X. Zhao, X. Yang, X. Liu, C.T. Wang, Y. Huang, T.G. Langdon, Processing of commercial purity titanium by ECAP using a 90 degrees die at room temperature, Mater. Sci. Eng. A 607 (2014) 482–489.
  • [53] C.P. Wang, F.G. Li, L. Wang, H.J. Qiao, Review on modified and novel techniques of severe plastic deformation, Sci. China Technol. Sci. 55 (9) (2012) 2377–2390.
  • [54] Y. Xirong, Z. Xicheng, F. Wenjie, Deformed Microstructures and mechanical properties of CP-Ti processed by multi-pass ECAP at room temperature, Rare Met. Mater. Eng. 38 (6) (2009) 955–957.
  • [55] Y.M. Wang, E. Ma, Three strategies to achieve uniform tensile deformation in a nanostructured metal, Acta Mater. 52 (6) (2004) 1699–1709.
  • [56] E. Homaei, K. Farhangdoost, J.K.H. Tsoi, J.P. Matinlinna, E.H.N. Pow, Static and fatigue mechanical behavior of three dental CAD/CAM ceramics, J. Mech. Behav. Biomed. Mater. 59 (2016) 304–313.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63d55bf6-5edf-43b3-ac11-8b7bd6287b49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.