Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The problem of the dense presence of voids in the solid insulation of cables remains a concern for researchers in terms of diagnosis and maintenance. The focus of this paper is to investigate the influence of both the layout and density of microcavities on the electrical and electromechanical constraints in the XLPE insulation of MV cables using numerical simulation. The simulation is based on the resolution of Laplace’s equation by the finite element method (FEM) using MATLAB. The electrostatic pressure and the elongation of the microcavities are estimated. This elongation leads to the formation of microchannels and then develops due to partial discharges to arborescence and in the end, the cable becomes out of service. This process takes a long time, so we use simulations to deepen the understanding of this phenomenon in a very short time. The electromechanical constraints are determined for different layouts and densities of microcavities.
Czasopismo
Rocznik
Tom
Strony
art. no. 2023206
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
- Département d’Automatique et Electromécanique, Faculté des Sciences et Technologie, Université de Ghardaia, PB 455 Noumerate, Ghardaia 47000, Algeria
- Laboratoire d'Etudes et Développement des Matériaux Semi-Conducteurs et diélectriques, Université Amar Telidji, BP 37 G, route de Ghardaïa, Laghouat 03000, Algérie
autor
- Laboratoire d'Etudes et Développement des Matériaux Semi-Conducteurs et diélectriques, Université Amar Telidji, BP 37 G, route de Ghardaïa, Laghouat 03000, Algérie
Bibliografia
- 1. Medoukali H, Guibadj M, Zegnini B. Effect of the dielectric inhomogeneity factor's range on the electrical tree evolution in solid dielectrics. Advances in Electrical and Electronic Engineering 2016; 14(5): 498-505. https://doi.org/10.15598/aeee.v14i5.1789.
- 2. Chen G, Hao M, Xu Z, Vaughan A, Cao J, Wang H. Review of high voltage direct current cables. CSEE Journal of Power and Energy Systems 2015; 1(2): 9-21. https://doi.org/10.17775/cseejpes.2015.00015.
- 3. Mazzanti G. Issues and Challenges for HVDC extruded cable systems. Energies 2021; 14(15): 4504. https://doi.org/10.3390/en14154504.
- 4. Yoshimura N, Hammam MS, Nishida M, Noto F. Effect of microvoids on Vt characteristics and tree growth in crosslinked polyethylene. InConference on Electrical Insulation & Dielectric Phenomena-Annual Report 1978: 342-351. https://doi.org/10.1109/CEIDP.1978.7728236.
- 5. Medoukali H, Guibadj M, Zegnini B. Study of electrical constraints within cavities in high voltage cables. International Journal of Computational and Experimental Science and Engineering 2015; 1(1): 30-35. https://doi.org/10.22399/ijcesen.194370.
- 6. Gouda OE, ElFarskoury AA, Elsinnary AR, Farag AA. Investigating the effect of cavity size within medium‐ voltage power cable on partial discharge behaviour. IET Generation, Transmission & Distribution 2018; (5): 1190-7. https://doi.org/10.1049/iet-gtd.2017.1012.
- 7. Medoukali H, Guibadj M, Zegnini B. Study of electrical and electromechanical constraints in the insulation of high‐voltage cables containing microcavities: effect of space charges. IET Generation, Transmission & Distribution. 2017; 11(13): 3231-5. https://doi.org/10.1049/iet-gtd.2016.1401.
- 8. El-Dessouky S, Gouda O. Computation of the electrostatic fields to evaluate the compression of eccentric insulation in power cables. Mansoura Engineering Journal 1991: 16(1): 114-123. https://doi.org/10.21608/bfemu.2021.169283.
- 9. Gouda O E, El-Dessouky S S. Analysis and experimental work on cavity defects in solid insulation. In IEEE International Symposium on Electrical Insulation 1990; 217-220. https://doi.org/10.1109/ELINSL.1990.109744.
- 10. Medoukali H, Zegnini B. Effect of the density and the position of the microvoids on the electrical constraints in the insulation of medium-voltage cables. 2020 IEEE 3rd International Conference on Dielectrics (ICD) 2020; 521-524. https://doi.org/10.1109/ICD46958.2020.9341870.
- 11. Danikas MG, Karafyllidis I, Thanailakis A, Bruning AM. Simulation of electrical tree growth in solid dielectrics containing voids of arbitrary shape. Modelling and Simulation in Materials Science and Engineering 1996; 4(6): 535. https://doi.org/10.1088/0965-0393/4/6/001.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63d036ef-3197-4544-8b08-b4692b742f7e