PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Flow Modeling in a Porous Cylinder with Regressing Walls Using Semi Analytical Approach

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the mathematical modeling of the flow in a porous cylinder with a focus on applications to solid rocket motors is presented. As usual, the cylindrical propellant grain of a solid rocket motor is modeled as a long tube with one end closed at the headwall, while the other remains open. The cylindrical wall is assumed to be permeable so as to simulate the propellant burning and normal gas injection. At first, the problem description and formulation are considered. The Navier–Stokes equations for the viscous flow in a porous cylinder with regressing walls are reduced to a nonlinear ODE by using a similarity transformation in time and space. Application of Differential Transformation Method (DTM) as an approximate analytical method has been successfully applied. Finally the results have been presented for various cases.
Rocznik
Strony
77--84
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • Faculty of Engineering, Aerospace Group, University of Tehran, Tehran, Iran
autor
  • Faculty of Engineering, University of Malek-Ashtar, Tehran, Iran
autor
  • Faculty of Engineering, Tarbiat Modares University, Tehran, Iran
Bibliografia
  • [1] Culick, F. E. C.: Unsteady motions in combustion chambers for propulsion systems, Agardograph, Advisory Group for Aerospace Research and Development, 2006.
  • [2] Stebel, J.: On shape stability of incompressible fluids subject to Navier’s slip, vol. 23, pp. 35–57, 201.
  • [3] Makinde, O. D. and Osalusi, E.: MHD steady flow in a channel with slip at the permeable boundaries. Applied Mathematics Department, University of Limpopo, South Africa, 2005.
  • [4] Makinde, O. D: Laminar flow in a channel of varying width with permeable boundaries, Romanian Jour. Phys., Vol. 40, pp. 4–5, 403–417, 1995.
  • [5] Yogesh, M., Morton, J. and Denn, M.: Planar contraction flow with a slip boundary condition, Newyork, NY 10031, USA, 2003.
  • [6] Ganji, D. D. and Azimi, M.: Application of Max Min Approach and Amplitude Frequency Formulation to Nonlinear Oscillation Systems, U.P.B. Scientific Bulletin, vol. 74, no. 3, pp. 131–140, 2012.
  • [7] Ganji, D. D., Azimi, M. and Mostofi, M.: Energy Balance Method and Amplitude Frequency Formulation Based of Strongly Nonlinear Oscillators, Indian Journal of Pure & Applied Physics, vol. 50, no. 11, pp. 670–675, 2012.
  • [8] Ganji, D. D. and Azimi, M.: Application of DTM on MHD Jeffery Hamel Problem with Nanoparticle, U.P.B. Sci. Bull., Series D. vol. 75, no.1, pp. 223–230, 2013.
  • [9] Shakeri, F., Ganji, D. D. and Azimi, M.: Application of HPM-Pade Technique to Jeffery Hamel Problem, International Review of Mechanical Engineering, vol. 6, no. 3, pp. 537–540, 2012.
  • [10] Azimi, M., Azimi, A. and Mirzaei, M.: Investigation of the unsteady graphene oxide nanofluid flow between two moving plates, Journal of Computational and Theoritical Nanoscience, Vol. 11, No. 10, pp. 1–5, 2014.
  • [11] Gorji-Bandpy, M., Azimi, M. and Mostofi, M.: Analytical Methods to a Generalized Duffing Oscillator, Australian Journal of Basic and Applied Science, Vol. 5, No. 11, pp. 788–796, 2011.
  • [12] Karimian, S. and Azimi, M.: Periodic Solution for Vibration of Euler–Bernoulli Beams Subjected to Axial Load Using DTM and HA, Scientific Bulletin, Series D, Issue 2, pp. 69–76, 2014.
  • [13] Majdalani, J., Zhou, C. and Dawson, C. A.: Two–dimensional viscous flow between slowly expanding or contracting walls with weak permeability, J. Biomech., 35, 1399–1403, 2002.
  • [14] Berman, A. S.: Laminar flow in channels with porous walls, J. Appl. Phys., 24: 1232–1235, 1953.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63ceffc6-f217-4428-936d-3515045f9969
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.