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1. Introduction

Space manipulators are extensively applied in recent years in 
space operations such as an on-orbit high-tolerance assem-
bly tasks, maintenance, inspection and precise capturing and 
transferring space debris [10]. Space manipulators are complex 
and highly non-linear dynamic systems composed of a space-
craft (platform or satellite) on which holonomic robotic mani-
pulator is mounted. The spacecraft is actuated by thrusters 
or other propellers and the links of holonomic manipulator are 
usually driven by electric DC motors. There are two modes 
of operations of space manipulators: free-flying and free-flo-
ating. In the case of free-flying dynamic systems, a spacecra-
ft’s controller is active. On the other hand, in the free-floating 
operational mode, a platform controller is turned off. Due to 
high potential costs of a space mission, space manipulators 
have to be robust against actuator failures. This means that 
such dynamic systems are, by nature, over-determined (num-
ber of actuators is greater than the number of coordinates 
uniquely describing a configuration of the whole space robotic 
system). It is worth noting that the space operations requ-
iring extremely high accuracy still make a great challenge for 
space manipulators due to various uncertainties of, e.g., parts 
or sub-parts to be assembled, end-effector tasks, etc., which 
are rigidly gripped and transferred by the end-effector along 
a desired trajectory mostly expressed in task (Cartesian) coor-
dinates. In practice, for example, either a known or unknown 
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�����!�This study provides a new class of controllers for freeflying space manipulators subject 
to unknown undesirable disturbing forces exerted on the end-effector. Based on suitably defined 
taskspace non-singular terminal sliding manifold and the Lyapunov stability theory, we derive a class 
of estimated extended transposed Jacobian controllers which seem to be effective in counteracting 
the unstructured disturbing forces. The numerical computations which are carried out for a space 
manipulator consisting of a spacecraft propelled by eight thrusters and holonomic manipulator of three 
revolute kinematic pairs, illustrate the performance of the proposed controller.
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sub-part (by its geometry and mass) introduces structural 
and/or parametric uncertainties in both kinematic and dyna-
mic equations of the space manipulator. As a result, transfer-
red sub-parts generate undesirable external disturbances (e.g., 
Coriolis and/or centrifugal forces) acting on the end-effector 
which may result in large tracking errors. When accompli-
shing the complicated assembly process, the space manipulator 
(or at least a holonomic manipulator) should attain possibly 
maximal manipulability measure [25]. Otherwise, a complex 
and time-consuming reconfiguration of the whole space mani-
pulator has to be carried out to make it possible accomplish-
ment of assembly operations by the end-effector. The control 
of space manipulators is usually decomposed into two stages. 
In the first stage, the space manipulator has to attain a close 
vicinity of a target using the thrusters (the rendezvous). In 
the second one, the target must be captured in a close range 
using only the holonomic manipulator actuators (the docking). 
Most of the works devoted to control process in Cartesian task 
coordinates concern an on-orbit docking maneuvers (e.g., with 
tumbling target) [17–19, 23] for which, the thrusters are tur-
ned off what implies a non-holonomic movement. In [17, 19, 
23], the authors have applied a Jacobian transposed techni-
que with full knowledge of kinematics and dynamics to steer 
space manipulator to a close target. An off-line control based 
on endogenous space approach and accurate knowledge of both 
kinematic nd dynamic equations has been offered in [18]. Let 
us note that control algorithms proposed in [17–19, 23] may 
lead, e.g., to configurations with small manipulability measure 
what prevents accomplishment of complicated assembly opera-
tions. In order to increase the mobility of in-orbit robotic sys-
tems, both thrusters of spacecraft and actuators of holonomic 
manipulator are assumed to be active (in works [11–13, 15, 
16, 24]) in controlling the space manipulator during the tra-
jectory tracking tasks. Unfortunately, a vast majority of con-
trol algorithms is expressed in the space of generalized (joint) 
coordinates [11–13, 24]. Due to the fact that a huge amount 
of trajectory tracking tasks is expressed in Cartesian (task) 
coordinates, the algorithms proposed in works [11–13, 24] are 
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not suitable for accomplishment of such tasks. Only a very few 
works has been reported which tackle the problem of trajectory 
tracking control of fully actuated space manipulators in task 
coordinates. In [15, 16], a modified transpose Jacobian control 
algorithm has been presented, which employs stored data of 
the control command in the previous time step as a learning 
tool to yield improved performance. Nevertheless, the control 
laws from [15, 16] are only stable and require the full know-
ledge of kinematic equations.

In this work, a new class of controllers for space manipulator 
subject to undesirable forces exerted on the end-effector, is intro-
duced. Due to unstructured nature of external disturbance forces, 
kinematics and dynamics of the mechanism is assumed herein to 
be uncertain. In order to tackle the trajectory tracking control 
problem subject to unstructured, a new non-singular terminal sli-
ding manifold (TSM) is proposed. Based on the TSM introduced, 
we propose a new robust controller (incorporating a transposed 
extended estimated Jacobian matrix) which tackles unknown 
external forces and uncertainties of kinematic as well as dynamic 
equations. By fulfilment of a reasonable assumption regarding 
the Jacobian matrix, the proposed control scheme is shown to 
be finite-time stable. The remainder of the paper is organized as 
follows. Section 2 introduces kinematic and dynamic equations 
of the space manipulator including external forces acting on the 
end-effector. Section 3 sets up a class of robust controllers solving 
the trajectory tracking control problem in a finite-time. Section 4 
presents computer example of the end-effector trajectory tracking 
by a space manipulator which is subject to external disturbance 
forces. Finally, some concluding remarks are drawn in Section 5.
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The control scheme designated in the next section is applicable 
to holonomic mechanical systems comprising both non-redun-
dant and redundant space manipulators considered here, which 
are described, in general, by the following dynamic equations, 
expressed in generalized coordinates [14, 19]:

 ( ) ( ) ( ), , ,M q q C q q q Bv d q q+ = +�� � � �  (1)

where ( )T
1,...,

n
nq q q= ∈�  denotes the space manipulator con-

figuration including location and orientation of spacecraft with 
respect to a global coordinate system OX1X2X3 and joint coor-
dinates of the holonomic manipulator; M(q) is the n  × n positive 
definite inertia matrix; ( ),C q q q� �  denotes the n–dimensional 
vector representing centrifugal and Coriolis forces; ( ),d q q�
describes the n–dimensional external disturbance signal; B(q) 
stands for the n  × m non-singular control matrix; v is the  
m–dimensional vector of steering signals (forces generated by 
thrusters of spacecraft and torques provided by actuators of 
holonomic manipulator); n denotes the dimension of the space 
of generalized coordinates and m stands for the number of 
controls. By assumption, we have m n≥ (safety and reliability 
of the space mission when a thruster is damaged). Without 
loss of generality, d is assumed to be upper estimated as follows

 ( ), , ,d t q qα≤ �  (2)

where a(×) is the time dependent, non-negative locally bounded 
Lebesgue measurable function. Location and orientation of 
the end-effector with respect to the global coordinate system 
OX1X2X3 is described by the kinematic equation

 ( ),e ep f q=  (3)

where k
ep ∈�  denotes the coordinates of the end-effector; 

: n k
ef →� �  represents k-dimensional mapping (in gen-

eral, non-linear with respect to q) and k is the dimension of 
the task space. On account of the fact that space manipulator 
becomes mostly in practice a redundant mechanism with 
respect to a task to be accomplished, the following inequality 
holds true: .n k≥  Consequently, there exists a possibility to 
augment vector of the end-effector coordinates pe by additional 
task coordinates pa (specified by the user) of the following gen-
eral form [20]:

 ( ),a ap f q=  (4)

where : n n-k
af →� �  is at least twice continuously differentia-

ble mapping with respect to q. From the practical point of view, 
redundant degrees of freedom of the mechanism may either 
satisfy additional task requirements (constraints) [20, 21] or 
optimize performance criteria reflecting the kinematic charac-
teristics of the mobile manipulator [7]. Concatenating fe(q) with 
fa(q), one obtains generalized kinematic-differential mappings  
 
which relate q with augmented task coordinates e

a

p
p p

⎛ ⎞
= ⎜ ⎟⎝ ⎠

 ( ),p f q=  ( ) ,p J q q=� �  (5)

where e

a

f
f f

⎛ ⎞
= ⎜ ⎟⎝ ⎠

 and fJ
q

∂=
∂

 is the n × n extended Jacobian

matrix. The task accomplished by the space manipulator is to 
track both desired end-effector trajectory ( ) ,e k

dp t ∈�  [ )0,t ∈ ∞  
and auxiliary (user specified) trajectory ( ) .a n-k

dp t ∈�  Intro-
ducing the task tracking error e = f(q) − pd(t), where  
 

,
e
d

d a
d

p
p

p
⎛ ⎞

= ⎜ ⎟⎝ ⎠
 the finite time control problem may be formally 

expressed by means of the following equations:

 
( )lim 0,

t T
e t

→
=  ( )lim 0,

t T
e t

→
=�  (6)

where 0 T≤  denotes a finite time of convergence of f(q) to pd 
and ( ) ( ) 0e t e t= =�  for .t T≥  The aim is to determine control 
u, for which, the corresponding trajectory q = q(t) as being 
the solution of differential equations (1), accomplishes the 
space manipulator task (6).
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Before we propose the control law solving the kinematic task 
(6), some useful concepts are first introduced. Let ( )ˆ ˆJ J q=  
and ( )ˆ ˆB B q=  denote estimates of the uncertain generalized 
extended Jacobian matrix J(q) and full rank control matrix 
B(q) given by formulas (5), (1). In further considerations, Ĵ  
and full rank matrix B̂  are assumed to fulfil the following ine-
qualities:

 ( )1 T
min

ˆ ˆ0 ,a JM Jλ −< ≤  (7)

and

 1 20 ,b b a≤ + <  (8)

where 

 

( ) ( )( )T
1 T 1 T

min 1

ˆ ˆ ˆ ˆ
0 ;

2

J J M J J J M J
bλ

− −⎛ ⎞− + −⎜ ⎟≤ ≤⎜ ⎟⎜ ⎟⎝ ⎠

( ) ( )( )T
1 # T 1 # T

min 2

ˆ ˆ ˆ ˆ ˆ ˆ
0 ;

2

JM B B B J JM B B B J
bλ

− −⎛ ⎞− + −⎜ ⎟≤ ≤⎜ ⎟⎜ ⎟⎝ ⎠
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#B̂  denotes the Moore-Penrose pseudo-inverse matrix of ˆ.B  It 
is worth noting that inequality (8) can be in practice fulfilled 
by selection of measurement devices, which provide both kine-
matic and dynamic parameters of space manipulator with suf-
ficient accuracy. Let us also observe that inequality (7) means 
non-singularity of extended estimated Jacobian matrix ( )ˆ .J q
Nevertheless, relations (7)–(8) are only needed in the proof of 
the finite-time stability of the controller to be designated. The 
estimate of constant a from (7) can be determined based both 
on the numerical solution with respect to q of the following 
system of algebraic equations: f(q) = pd(t) and the knowledge 
of the components of the nominal kinematic and dynamic 
equations J(q) and M(q). Motivated partially by the computed 
torque methodology [8], we propose a new extended estimated 
transposed Jacobian control law of the following form:

 
# Tˆ ˆ ,v B J u=  (9)

where nu ∈�  is a new control to be determined. Applying (9) 
as a non-linear control law, inserting it to the right-hand side 
of (1) and determining q��gives

 
1 # T 1 1ˆ ˆ .q M BB J u M Cq M d− − −= − +�� �  (10)

Let us also twice differentiate e with respect to time thus 
obtaining

  (11)

In order to design a controller solving the space manipulator 
task (6), we introduce the following non-singular integral sliding 
vector variable ,ns ∈�  defined in task coordinates as follows

 
( ) ( )( )21

0 10
0 ,

t
s e e e e dααω ω τ= − + +∫� � �  (12)

where 1
1

2

;a
a

α =  a1, a2 are positive odd numbers, a1 < a2 < 2a1, 

1
2

1

2 ;
1

αα
α

=
+

 w0, w1 stand for controller gains. The odd vari- 
 

ables a1 and a2 ensure the finite-time convergence of the task 
errors ( ),e e�  to the origin ( ) ( ), 0,0 .e e =�  The time derivative of 
(12) results after simple calculation and taking into account 
(11) in the following expression:

 
1 # Tˆ ˆ ,s JM BB J u−= +� �  (13)

where 

In further analysis, an upper estimate of �  will be needed. 
It takes the form given below:

 ,≤� �  (14)

where ( ) ( ) 212
0 1 ,dw q e e pααα ω ω= + + + −� � ���  w denotes 

a construction parameter of the space manipulator. In what 
follows, we provide a useful lemma [8].

)	����*� If s(t) = 0 for 0t T≥ ≥  then task errors ( ),e e� of 
(6) stably converge to the origin  in a finite time.

Based on (7)–(8), (12)–(14), we propose the following sim-
ple control law for the space manipulator solving the kinematic 
task (6):

 

( )
( )0 for 0

, ,
0 otherwise,

c s c s
a su t q s

⎧− + ≠⎪= ⎨
⎪⎩

�
 (15)

where c, c0 denote controller gains to be specified further on. 
Applying the Lyapunov stability theory, we now derive the 
following result.

Theorem 1. If w0, w1, c0 > 0 and 
1 21

cc b b
a

′= +−
with c¢ > 1 then 

control scheme (9), (15) guarantees stable convergence in a finite 
time of the task tracking errors ( ),e e�  to the origin ( ) ( ), 0,0 .e e =�

Proof. Consider a Lyapunov function candidate

 

1 , .
2

V s s=  (16)

Computing the time derivative of (16) and replacing v by (9) 
results in the following expression:

 

( )
( )
1 T 1 T

1 # T

ˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ, , .

V s JM J u s J J M J u

s JM B B B J u s

− −

−

= + − +

− +

�

�
 (17)

Replacing u from (17) by (15) and then using (7)–(8), one obta-
ins the inequality

 
( ) 1 2

0 .cb cbV s c c s
a a

⎛ ⎞≤ + − + + +⎜ ⎟⎝ ⎠
� � �  (18)

On account of (14) and using assumption regarding c0 as well 

as 
1 21

cc b b
a

′= +−
with c¢ > 1 from Theorem 1, we have

 
( ) ( )1 2

0 01 1 .cb cbV s c c c c s
a a

⎛ ⎞≤ + − + + + ≤ − −′⎜ ⎟⎝ ⎠
� �  (19)

Based on (19) and (12), we conclude that TSM manifold s = 0 
is stably attainable in a finite time. Finally, from Lemma 1, it 
follows that origin ( ) ( ), 0,0e e =�  can also be attained in a finite 
time 0.T ≥                         

Two remarks may be made regarding the control law (9), (15) 
and Theorem 1.

+�,	�����*��Let us observe that term  in controller (15) will 

cause undesirable chattering effect in a small neighbourhood of 
s = 0. In order to eliminate the chattering, a known boundary 
layer technique of control law may now be utilized as follows

 

( )
( )

( )

0

0

for
, , ,

otherwise,

c s c s
a su t q s
c s c
a

ε
ε

ε

⎧− + ≥⎪⎪= ⎨
⎪ − +⎪⎩

�

�
 (20)

where ε  is a user-specified arbitrarily small positive real num-
ber (size of boundary layer). Let ( ),e e t ε=  and  be 
the solutions of control problem (1), (9), (12) and (20). 
Although boundary layer control is a well known technique, 
its desired property of uniform ultimate boundedness has been 
established for linear sliding variables s, e, e�  and diagonal 
actuation matrices of non-zero diagonal components (or of 
constant signs) in [22] as well as for dynamic systems fulfilling 
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the so called matching conditions with known actuation matri-
ces in work, e.g., [2], respectively. On the other hand, expres-
sion (12) is a non-linear differential equation with respect to 

 and ( ), .e e t ε=� �  Moreover, B is uncertain non-diago-
nal actuation matrix. Consequently, the classic results regard-
ing the ultimate uniform boundedness of  and 

( ),e e t ε=� �  may not, in general, apply in our case. Hence, based 
on the results from work by [8], we may conclude that task 
errors ( ), ,e e t ε=  ( ),e e t ε=� �  converge uniformly with respect 
to time t (t  ³T) to the origin 

 
as 0,ε →  i.e.  

( ), 0e t ε →�  as 0.ε →

+�,	��������Let us note that expressions (9), (15) present 
a transpose Jacobian controller. In such a context, the use of 
the transpose of the Jacobian matrix to robotic manipulators 
in [3, 4, 16] is a well-known technique.

However, works [3, 4, 16] present stability analysis for the set-
-point control problems. On the other hand, Theorem 1 provides 
stability analysis for the trajectory tracking of the space manipu-
lator whose both kinematic and dynamic equations are uncertain 
as well as disturbances acting on the mechanism are unknown. 
In such a context, it is worth noting the fact that authors from 
works [5, 6] have also shown finite-time convergence of their 
controller using however the inverse of the Jacobian matrix.
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In this section, we illustrate the performance of the proposed 
robust controller (9), (20) using the data of the planar space 
manipulator constructed in the Space Research Centre of the 
Polish Academy of Sciences [1] and schematically depicted 
in Fig. 1. This mechanism consists of a freeflying spacecraft 

In each of the four corners of the spacecraft, there are two 
thrusters that propel it. Moreover, the holonomic manipulator is 
actuated by three DC motors which generate three generalized 
torques in the joints of the kinematic pairs. Hence, the mecha-
nism from Fig. 1 generates m = 11 steering signals. The space 
manipulator is assumed to operate in a three dimensional task 
space (k = 3). Hence, it becomes redundant mechanism with 
n − k = 3 redundant degrees of freedom. In the numerical com-
putations, SI units are used. The nominal values of both kinema-
tic and dynamic parameters of the space manipulator have been 
taken from work [1]. The nominal values of link lengths of the 
holonomic manipulator are equal to l1 = 0.449 [m], l2 = 0.449 [m] 
and l3 = 0.3103 [m]. The coordinates (p1, p2) of the manipulator 
mounting point equal (p1, p2) = (0.377 [m], −0.001 [m]).

Distance w from the spacecraft geometry centre to each of 
corner is equal to w = 0.2 [m]. The dynamic parameters take the 
following nominal values: spacecraft mass m0 = 58.7 [kg], masses 
of the first, second and third links of the holonomic manipulator 
equal m1 = 2.82 [kg], m2 = 2.82 [kg] and m3 = 4.64 [kg], respec-
tively; spacecraft inertia I0 = 2.42 [kg⋅m2], links inertias are equal 
to I1 = 0.06 [kg⋅m2], I2 = 0.06 [kg⋅m2] and I3 = 0.05 [kg⋅m2], 
respectively. The kinematic equations of the space manipulator 
from Fig. 1 take the following form:

 

( )
,1

,2

,3

1, 1 2 1 2 3

2, 1 2 1 2 3

1 2 3

1 2 3
1 2 3 ,

e

e e e

e

c

c

f
p f q f

f

x p c p s l c l c l c
x p s p c l s l s l s

y y y

θ θ θ θ θ
θ θ θ θ θ

θ

⎛ ⎞
⎜ ⎟= = =⎜ ⎟
⎜ ⎟⎝ ⎠

+ − + + +⎛ ⎞
⎜ ⎟+ + + + +⎜ ⎟⎜ ⎟+ + +⎝ ⎠

 (21)

where c q = cos(q); s q = sin(q); ( )1
cos ;

i
jj

c i yθ θ
=

= + ∑  

( )1
sin ;

i
jj

s i yθ θ
=

= + ∑  i = 1, …, n and n = 3, respectively. Due 

to inequality n − k = 3 > 0, we can augment vector pe by 
additional coordinates 3

ap ∈�  of the geometric centre of 
spacecraft and its orientation, as follows

 

( )
1,

2, .
c

a a c

x
p f q x

θ

⎛ ⎞
⎜ ⎟= = ⎜ ⎟⎜ ⎟⎝ ⎠

 (22)

Disturbing signal d from (1) is assumed in the simulation to 
take the following form:

 

( )

( )

( )

T
,1

,2

,

e

e

f q
qd q F

f q
q

∂⎡ ⎤
⎢ ⎥∂⎢ ⎥=
⎢ ⎥∂
⎢ ⎥

∂⎣ ⎦

 (23)

where 2F ∈�  denotes external force vector (imitating the 
action of, e.g., a sub-part to be assembled) exerted on the end-
-effector. It takes the following form (external forces of a Brow-
nian motion type):

 
 (24)

where  X(t) ~ N(0, 1); i = 1, 2; 0,25 .t ∈⎡ ⎤⎣ ⎦   
The actuator matrix B in (1) equals

 
( ) ( ) 3 3

3 8 3 3
,spacecrafB

B q Tr θ ×

× ×

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

�
� �  (25)

Fig. 1. A kinematic scheme of the space manipulator with force F 
acting on the end-effector
Rys. 1. Schemat kinematyczny manipulatora kosmicznego z siłą F 
działającą na koniec efektora

whose posture is described by two position variables x1,c, x2,c 
and orientation angle q with respect to the global coordinate 
system OX1X2. The planar holonomic manipulator (of three 
revolute kinematic pairs of the V-th order) whose configuration 
is described by the three joint angles y1, y2 and y3, respectively 
is rigidly attached to the spacecraft at the point (p1, p2) – see 
Fig. 1. Consequently, vector of generalized coordinates q of the 
space manipulator from Fig. 1 equals q = (x1,c, x2,c, q, y1, y2, y3)

T  
with n = 6.
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Fig. 2. The logarithm of the Euclidean norm of task errors e for 
controller (9), (20)
Rys. 2. Logarytm normy Euklidesowej błędow zadaniowych e dla 
sterownika (9), (20)
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Fig. 6. Force v4 of the fourth thruster for controller (9), (20)
Rys. 6. Siła v4 czwartego pędnika typu cold-gas dla sterownika (9), (20)
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Fig. 3. Force v1 of the first thruster for controller (9), (20)
Rys. 3. Siła v1 pierwszego pędnika typu cold-gas dla sterownika (9), (20)
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Fig. 7. Force v5 of the fifth thruster for controller (9), (20)
Rys. 7. Siła v5 piątego pędnika typu cold-gas dla sterownika (9), (20)
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Fig. 4. Force v2 of the second thruster for controller (9), (20)
Rys. 4. Siła v2 drugiego pędnika typu cold-gas dla sterownika (9), (20)
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Fig. 5. Force v3 of the third thruster for controller (9), (20)
Rys. 5. Siła v3 trzeciego pędnika typu cold-gas dla sterownika (9), (20)

where

( ) ( ) 3 3

3 8 3 3

;
Rot

Tr
θ

θ ×

× ×

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

�
� �

( )
( ) 0

0 ;
0 0 1

c s
Rot s c

θ θ
θ θ θ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

1 0 0 1 1 0 0 1
0 1 1 0 0 1 1 0 ;spacecraftB
ω ω ω ω ω ω ω ω

− −⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− − − −⎣ ⎦

3 3×�  is the 3  ×  3 identity matrix and 3 3,×� 3 8×�  denote 3  ×  3 as 
well as 3  ×  8 zero matrices, respectively. The estimates for con-

troller (9), (20) are chosen as a = 0.1, b1 = 0.03, b2 = 0.06. In 
order to simplify numerical computations, rough conservative 
estimates of wi, i = 1, 2 have been assumed. Hence, coefficients 
wi were chosen as follows w1 = 1 and w2 = 0.02, respectively. The 
initial configuration q(0) and velocity ( )0q�  are assumed to be 
equal to q(0) = (0, 0, 0, −0.458, 2.19, −0.161)T and ( )0 0,q =�  
respectively. The task realized by controller (9), (20) is to track 
desired augmented trajectory pd(t) which takes the form

 

 (26)
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Fig. 10. Force v8 of the eight thruster for controller (9), (20)
Rys. 10. Siła v8 ósmego pędnika typu cold-gas dla sterownika (9), (20)
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Fig. 13. Torque v11 of the third holonomic manipulator joint for 
controller (9), (20)
Rys. 13. Moment napędowy v11 trzeciego ogniwa manipulatora 
holonomicznego dla sterownika (9), (20)
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Fig. 11. Torque v9 of the first holonomic manipulator joint for 
controller (9), (20)
Rys. 11. Moment napędowy v9 pierwszego ogniwa manipulatora 
holonomicznego dla sterownika (9), (20)
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Fig. 14. Disturbing external force Fx1 acting on the end-effector with 
controller (9), (20)
Rys. 14. Zewnętrzna siła zakłocająca Fx1 działająca na koniec efektora dla 
sterownika (9), (20)
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Fig. 12. Torque v10 of the second holonomic manipulator joint for 
controller (9), (20)
Rys. 12. Moment napędowy v10 drugiego ogniwa manipulatora 
holonomicznego dla sterownika (9), (20)
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Fig. 15. Disturbing external force Fx2 acting on the end-effector with 
controller (9), (20)
Rys. 15. Zewnętrzna siła zakłócająca Fx2 działająca na koniec efektora dla 
sterownika (9), (20)
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Fig. 9. Force v7 of the seventh thruster for controller (9), (20)
Rys. 9. Siła v7 siódmego pędnika typu cold-gas dla sterownika (9), (20)
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Fig. 8. Force v6 of the sixth thruster for controller (9), (20)
Rys. 8. Siła v6 szóstego pędnika typu cold-gas dla sterownika (9), (20)
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The estimates ,̂J  B̂  of the uncertain Jacobian matrix J(q) and 
control matrix B(q) are assumed in the computations to be equal 
to

 
ˆ ,J J J= + Δ     ˆ ,B B B= + Δ  (27)

where each element ΔJi,,j, 1 , 6i j≤ ≤ 1 of matrix ΔJ and each 
element ΔBi,j, 1 6,i≤ ≤  1 11j≤ ≤  of ΔB were randomly gen-
erated according to normal distribution 0.1N(0, 1). In order 
to attain the convergence of task errors e at least less or equal 
to 10−6, with simultaneous fulfilment of inequalities 0 1iv≤ ≤  
for i = 1 : 8 (forces generated by thrusters of the spacecraft), 
the following numerical values of gain coefficients are taken for 
controller (9), (20: w0 = 2, w1 = 6, a1 = 3/5, e = 0.01, c¢ = 2.4, 
and c0 = 0.77, respectively. On account of the physical prop-
erties of thrusters, we have equivalently modified computations 
of the thrusters forces vi, i = 1 : 8 as follows [26]. If vi(t) < 0 
then vi(t) := 0. Otherwise vi(t) := 2vi(t), where symbol := 
means assigning a value to a variable. The results of numerical 
computations are depicted in Figs 2−15. As is seen from 
Fig. 2, our controller generates tracking errors e, which are 
practically for 3t ≥  equal to zero. Steering signals (eight 
forces generated by thrusters and three torques provided by 
DC motors of holonomic manipulator) are depicted in 
Figs 3−13. As is seen from Figs 3−13, control variables vi, 
i = 1 : 8 fulfil inequalities 0 1.iv≤ ≤  Moreover, all the steer-
ing signals v1, ..., v11 are absolutely continuous functions of 
time. Although, manipulator torques/forces (see Figs 3−13) 
present continuous mapping, the control signals shown in 
Figs 3−13 could not be feasible in real case due to the phys-
ical limitations of the actuators. In such a case a smoothing of 
torques/forces should be carried out. In order to eliminate 
additional phase delay related with recursive low-pass filters, 
one could apply Newton predictor enhanced Kalman filter 
(NPEKF) [9] which provides a wide bandwidth and significan-
tly reduced phase lag. Finally, Figs 14−15 present one reali-
zation of external disturbing force 

 
acting on the 

end-effector which tracks extended desired trajectory pd(t).
Let’s know that the control algorithm (9), (15) is also 

able to converge to desired trajectory pd starting from an 
arbitrary initial configuration. However, in order to main-
tain control constraints on usually imposed space craft thru-
sters, the control gains related to space craft should be 
sufficiently small. In practice, they should be chosen by 
trials and errors.

5. Conclusions

A new class of task space TSM controllers with finite-time 
stability when tracking a desired end-effector trajectory by 
the space manipulator has been proposed in this paper. On 
account of the fact that external forces acting on the mecha-
nism are unknown, we have offered a sliding technique which 
seems to be effective in counteracting those undesirable for-
ces. Moreover, our controller provides physically realizable 
steering signals. Another feature of the control law propo-
sed is the elimination of the Jacobian matrix inverse (or 
pseudo-inverse) from the trajectory tracking. Instead, esti-
mated extended Jacobian transpose matrix has been used. 
Applying the Lyapunov stability theory, control strategy (9), 
(15) is shown to be finite-time stable by fulfilment of practi-
cally reasonable assumptions. Numerical computations have 
shown that controller (9), (20) well performs under conditions 
of unknown external disturbances, uncertain kinematics and 
dynamics of the mechanism. Although our transposed estima-
ted Jacobian controller needs some knowledge extracted from 

both the system kinematics and dynamics of the mechanism, 
the approach is able to handle uncertainties in kinematics 
and dynamics of the space manipulator as well as unknown 
external forces.
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"���
����	��!�W pracy zaproponowano nową klasę sterowników dla manipulatorów kosmicznych 
przy uwzględnieniu nieznanych, niepożądanych sił zakłócających wywieranych na koniec efektora. 
W oparciu o odpowiednio zdefiniowane nieosobliwą, końcową rozmaitość ślizgową i teorię stabilności 
Lapunowa wyprowadzono klasę rozszerzonych estymowanych transponowanych sterowników 
Jakobianowych, ktore wydają się być efektywne w przeciwdziałaniu nieustrukturyzowanych sił 
zakłocających. Podejście zilustrowano również obliczeniami numerycznymi dla manipulatora 
kosmicznego składającego się z bazy napędzanej przez osiem pędników typu cold-gas i manipulatora 
holonomicznego o trzech parach kinematycznych obrotowych.
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