PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new adaptable multiple-crack detection algorithm in beam-like structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, a simple method for detecting, localizing and quantifying multiple cracks in beams using natural frequencies is presented. We model cracks as rotational springs and demonstrate a relationship among natural frequencies, crack locations and depths. The main advantage of our method is that it can detect adaptably the unknown number of cracks intervened. Concise, simple calculations and good accuracy are other advantages of this method. We present a number of numerical examples for several beams to validate our method.
Rocznik
Strony
469--483
Opis fizyczny
Bibliogr. 40 poz., rys.
Twórcy
autor
  • Department of Mechanical Engineering, Isfahan University of Technology University Blvd. Isfahan 84156-83111, Iran
autor
  • Department of Mechanical Engineering, Isfahan University of Technology University Blvd. Isfahan 84156-83111, Iran
  • Department of Mechanical Engineering, Isfahan University of Technology University Blvd. Isfahan 84156-83111, Iran
Bibliografia
  • 1. J. Grabowska, M. Palacz, M. Krawczuk, Damage identification by wavelet analysis, Mech. Syst. Signal Process, 22, 1623–1635, 2008.
  • 2. B. Li, X.F. Chen, J.X. Ma, Z.J. He, Detection of crack location and size in structures using wavelet finite element methods, J. Sound Vib., 285, 767–782, 2005.
  • 3. J. Hu, R.Y. Liang, An integrated approach to detection of cracks using vibration characteristics, J. Frankl. Inst., 330, 841–853, 1993.
  • 4. A.S. Sekhar, Multiple cracks effects and identification, Mech. Syst. Signal Process., 22, 845–878, 2008.
  • 5. T.G. Chondros, A.D. Dimarogonas, J. Yao, A continuous cracked beam vibration theory, J. Sound Vib., 215, 17–34, 1998.
  • 6. G. Gounaris, A. Dimarogonas, A finite element of a cracked prismatic beam for structural analysis, Comput. Struct., 28, 309–313, 1988.
  • 7. N.T. Khiem, T.V. Lien, A simplified method for natural frequency analysis of a multiple cracked beam, J. Sound Vib., 245, 737–751, 2001.
  • 8. S. Orhan, Analysis of free and forced vibration of a cracked cantilever beam, NDT& E Int., 40, 443–450, 2007.
  • 9. S. Christides, A.D.S. Barr, One-dimensional theory of cracked Bernoulli-Euler beams, Int. J. mech. Sci., 26, 639–648, 1984.
  • 10. W.M. Ostachowicz, M. Krawczuk, Analysis of the effect of cracks on the natural frequencies of a cantilever beam, J. Sound Vib., 150, 191–201, 1991.
  • 11. D. Wang, H. Zhu, C. Chen, Y. Xia, An impedance analysis for crack detection in the Timoshenko beam based on the anti-resonance technique, Acta Mech. Solida Sin., 20, 228–235, 2007.
  • 12. N. Khaji, M. Shafiei, M. Jalalpour, Closed-form solutions for crack detection problem of Timoshenko beams with various boundary conditions, Int. J. Mech. Sci., 51, 667–681, 2009.
  • 13. E. Viola, L. Federici, L. Nobile, Detection of crack location using cracked beam element method for structural analysis, Theor. Appl. Fract. Mech., 36, 23–35, 2001.
  • 14. G.L. Qian, S.N. Gu, J.S. Jiang, The dynamic behaviour and crack detection of a beam with a crack, J. Sound Vib., 138, 233–243, 1990.
  • 15. D.P. Patil, S.K. Maiti, Detection of multiple cracks using frequency measurements, Engng. Fract. Mech., 70, 1553–1572, 2003.
  • 16. A.P. Bovsunovsky, V.V. Matveev, Analytical approach to the determination of dynamic characteristics of a beam with a closing crack, J. Sound Vib., 235, 415–434, 2000.
  • 17. T.G. Chondros, A.D. Dimarogonas, J. Yao, Vibration of a beam with a breathing crack, J. Sound Vib., 239, 57–67, 2001.
  • 18. M. Dilena, A. Morassi, Identification of crack location in vibrating beams from changes in node positions, J. Sound Vib., 255, 915–930, 2002.
  • 19. T.D. Chaudhari, S.K. Maiti, Modelling of transverse vibration of beam of linearny variable depth with edge crack, Engng. Fract. Mech., 63, 425–445, 1999.
  • 20. M.B. Rosales, C.P. Filipich, F.S. Buezas, Crack detection in beam-like structures, Engng. Struct., 31, 2257–2264, 2009.
  • 21. Y. Narkis, Identification of crack location in vibrating simply supported beam, J. Sound Vib., 172, 549–558, 1994.
  • 22. S.M. Al-Said, Crack identification in a stepped beam carrying a rigid disk, J. Sound Vib., 300, 863–876, 2007.
  • 23. P.F. Rizos, N. Aspragathos, A.D. Dimarogonas, Identification of crack location and magnitude in a cantilever beam from the vibration modes, J. Sound Vib., 138, 381–388, 1990.
  • 24. S. Chinchalkar, Determination of crack location in beams using natural frequencies, J. Sound Vib., 247, 417–429, 2001.
  • 25. S. Caddemi, A. Morassi, Crack detection in elastic beams by static measurements, Int. J. Solids Struct. 44, 5301–5315, 2007.
  • 26. A. Ghadami, A. Maghsoodi, H.R. Mirdamadi, Energy analysis of multiple-cracked Euler–Bernoulli beam. J. Vibroeng., 14, 1392–8716, 2012.
  • 27. M. Dilena, A. Morassi, The use of antiresonances for crack detection in beams, J. Sound Vib., 276, 195–214, 2004.
  • 28. X.F. Chen, Z.J. He, J.W. Xiang, Experiments on Crack Identification in Cantilever Beams, Soc. Exp. Mech., 45, 295–300, 2005.
  • 29. J.H. Lee, Identification of multiple cracks in a beam using natural frequencies, J. Sound Vib., 320, 482–490, 2009.
  • 30. J.H. Lee, Identification of multiple cracks in a beam using vibration amplitudes, J. Sound Vib., 326, 205–212, 2009.
  • 31. A.C. Chasalevris, C.A. Papadopoulos, Identification of multiple cracks in beams under bending, Mech. Syst. Signal Process., 20, 1631–1673, 2006.
  • 32. N.T. Khiem, T.V. Lien, Multi-crack detection for beam by the natural frequencies, J. Sound Vib., 273, 175–184, 2004.
  • 33. D.P. Patil, S.K. Maiti, Experimental verification of a method of detection of multiple cracks in beams based on frequency measurements, J. Sound Vib., 281, 439–451, 2005.
  • 34. K. Mazanoglu, M. Sabuncu, Vibration analysis of non-uniform beams having multiple edge cracks along the beam’s height, Int. J. Mech. Sci., 52, 515–522, 2010.
  • 35. X.F. Yang, A.S.J. Swamidas, R. Seshadri, Crack identification in vibrating beams using the energy, J. Sound Vib., 244, 339–357, 2001.
  • 36. K. Mazanoglu, M. Sabuncu, Flexural vibration of non-uniform beams having double-edge breathing cracks, J. Sound Vib., 329, 4181–4191, 2010.
  • 37. W.W. Zhang, Z.H. Wang, H.W. Ma, Crack identification in stepped cantilever beam combining wavelet analysis with transform matrix, Acta Mech. Solida Sin., 22, 360–368, 2009.
  • 38. A. Morassi, Damage detection and generalized Fourier coefficients, J. Sound Vib., 302, 229–259, 2007.
  • 39. A. Maghsoodi, A. Ghadami, H.R. Mirdamadi, Multiple-crack damage detection in multi-step beams by a novel local flexibility-based damage index. J Sound Vib., 332, 294– 305, 2013.
  • 40. B.P. Nandwana, S.K. Maiti, Detection of the location and size of a crack in stepped cantilever beams based on measurements of natural frequencies, J Sound Vib., 203, 435–446, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63bf1b2e-1927-4ac5-9b88-0b4c87d4b3f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.