Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let Zα and Zα be two independent positive α-stable random variables. It is known that (Zα/Zα)α is distributed as the positive branch of a Cauchy random variable with drift. We show that the density of the power transformation (Zα/Zα)β is hyperbolically completely monotone in the sense of Thorin and Bondesson if and only if α ≤ 1/2 and |β| ≥ α/(1−α). This clarifies a conjecture of Bondesson (1992) on positive stable densities.
Czasopismo
Rocznik
Tom
Strony
191--200
Opis fizyczny
Bibliogr. 16 poz., wykr.
Twórcy
autor
- Université Lille 1, Laboratoire Paul Painlevé, Cité Scientifique, F-59655 Villeneuve d’Ascq Cedex
Bibliografia
- [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards. Applied Mathematics Series, Vol. 55, U.S. Government Printing Office, Washington, D.C., 1964.
- [2] L. Bondesson, On the infinite divisibility of the half-Cauchy and other decreasing densities and probability functions on the nonnegative line, Scand. Actuar. J. (3-4) (1987), pp. 225-247.
- [3] L. Bondesson, Generalized gamma convolutions and complete monotonicity, Probab. Theory Related Fields 85 (2) (1990), pp. 181-194.
- [4] L. Bondesson, Generalized Gamma Convolutions and Related Classes of Distributions and Densities, Lecture Notes in Statist., Vol. 76, Springer, New York 1992.
- [5] L. Bondesson, A problem concerning stable distributions, Technical report, Uppsala University, 1999.
- [6] L. Chaumont and M. Yor, Exercises in Probability: A Guided Tour from Measure Theory to Random Processes, via Conditioning, Camb. Ser. Stat. Probab. Math., Cambridge University Press, Cambridge, second edition, 2012.
- [7] A. Diédhiou, On the self-decomposability of the half-Cauchy distribution, J. Math. Anal. Appl. 220 (1) (1998), pp. 42-64.
- [8] S. Fourati, α-stable densities are hyperbolically completely monotone for α ϵ (0, 1/4] U [1/3, 1/2], arXiv: 1309.1045, September 2013.
- [9] W. Jedidi and T. Simon, Further examples of GGC and HCM densities, Bernoulli 19 (5A) (2013), pp. 1818-1838.
- [10] G. Kristiansen, A proof of Steutel’s conjecture, Ann. Probab. 22 (1) (1994), pp. 442-452.
- [11] K. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv. Math., Vol. 68, Cambridge University Press, Cambridge 1999.
- [12] R. L. Schilling, R. Song, and Z. Vondraček, Bernstein Functions: Theory and Applications, de Gruyter Stud. Math., Vol. 37, Walter de Gruyter & Co., Berlin 2010.
- [13] T. Simon, Multiplicative strong unimodality for positive stable laws, Proc. Amer. Math. Soc. 139 (7) (2011), pp. 2587-2595.
- [14] O. Thorin, Proof of a conjecture of L. Bondesson concerning infinite divisibility of powers of a gamma variable, Scand. Actuar. J. (3) (1978), pp. 151-164.
- [15] D. V. Widder, The Laplace Transform, Princeton Math. Ser., Vol. 6, Princeton University Press, Princeton, N.J., 1941.
- [16] V. M. Zolotarev, One-dimensional Stable Distributions, Transl. Math. Monogr., Vol. 65, American Mathematical Society, Providence, R.I., 1986.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63bea7e6-35fc-4ec4-9424-1ef350d1e7df