PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Localizing impact damage of composite structures with modified RAPID algorithm and non-circular PZT arrays

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Detecting and localizing impact damage of composite structures is one of the key expectations towards development of structural health monitoring (SHM) systems. In this paper, a method intended to meet these requirements is presented. The developed method is based on guided waves actuation in a monitored structure. One of the methods used for damage localization with guided waves is the RAPID/PRA algorithm. This algorithm is mostly used for circular arrays of PZT piezoelectric transducers. In the paper a modification of this approach, adopted to be used for more general geometries of PZT networks is presented. Its main improvement is that predicted location of damage is less biased by inhomogeneous distributions of sensing paths, i.e. lines connecting pairs of transducers of a network, than for RAPID algorithm. The developed method was verified experimentally on composite laminated specimens with introduced damage caused by low energy impact. Detailed description of the developed algorithm as well as the results of impact damage localization tests are delivered in the paper.
Rocznik
Strony
178--187
Opis fizyczny
Bibliogr. 26 poz., fot., rys., wykr.
Twórcy
  • Air Force Institute of Technology, 6 Ks. Boleslawa Street, 01-494 Warsaw, Poland
autor
  • Air Force Institute of Technology, 6 Ks. Boleslawa Street, 01-494 Warsaw, Poland
autor
  • Institute of Fundamentals of Machinery Design, Silesian University of Technology, 18A Konarskiego Street, 44-100 Gliwice, Poland
Bibliografia
  • [1] M. Sohn, X. Hu, J. Kim, L. Walker, Impact damage characterisation of carbon fibre/epoxy composites with multi-layer reinforcement, Composites Part B: Engineering 31 (8) (2000) 681–691.
  • [2] S.-X. Wang, L.-Z. Wu, L. Ma, Low-velocity impact and residual tensile strength analysis to carbon fiber composite laminates, Materials & Design 31 (1) (2010) 118–125.
  • [3] C. Poon, T. Benak, R. Gould, Assessment of impact damage in toughened resin composites, Theoretical and Applied Fracture Mechanics 13 (2) (1990) 81–97.
  • [4] C. Li, N. Hu, Y. Yin, H. Sekine, H. Fukunaga, Low-velocity impact-induced damage of continuous fiber-reinforced composite laminates. Part I. An FEM numerical model, Composites Part A: Applied Science and Manufacturing 33 (8) (2002) 1055–1062.
  • [5] J. Bieniaś, P. Jakubczak, B. Surowska, K. Dragan, Low-energy impact behaviour and damage characterization of carbon fibre reinforced polymer and aluminium hybrid laminates, Archives of Civil and Mechanical Engineering 15 (4) (2015) 925–932.
  • [6] R. Smith, L. Jones, B. Zeqiri, M. Hodnett, Ultrasonic C-scan standardisation for fibre-reinforced polymer composites: minimising the uncertainties in attenuation measurements, Insight 40 (1) (1998) 34–43.
  • [7] D. Roach, Industry Survey of Structural Health Monitoring Technology and Usage, Sandia National Laboratories, 2012.
  • [8] W. Staszewski, C. Boller, G.R. Tomlinson, Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing, John Wiley & Sons, 2004.
  • [9] V. Giurgiutiu, Structural Health Monitoring: With Piezoelectric Wafer Active Sensors, 2nd ed., Academic Press, 2014.
  • [10] T. Stepinski, T. Uhl, W. Staszewski, Advanced Structural Damage Detection: From Theory to Engineering Applications, John Wiley & Sons, 2013.
  • [11] Z. Su, L. Ye, Identification of Damage Using Lamb Waves: From Fundamentals to Applications, Springer, 2009.
  • [12] X. Zhao, H. Gao, G. Zhang, B. Ayhan, F. Yan, C. Kwan, J.L. Rose, Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring, Smart Materials and Structures 16 (4) (2007) 1208.
  • [13] X. Zhao, R.L. Royer, S.E. Owens, J.L. Rose, Ultrasonic lamb wave tomography in structural health monitoring, Smart Materials and Structures 20 (10) (2011) 105002.
  • [14] Z. Sharif-Khodaei, M. Aliabadi, Assessment of delay-and-sum algorithms for damage detection in aluminium and composite plates, Smart Materials and Structures 23 (7) (2014) 075007.
  • [15] T. Hay, R. Royer, H. Gao, X. Zhao, J. Rose, A comparison of embedded sensor lamb wave ultrasonic tomography approaches for material loss detection, Smart Materials and Structures 15 (4) (2006) 946.
  • [16] J.E. Michaels, Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors, Smart Materials and Structures 17 (3) (2008) 035035.
  • [17] L. Qiu, S. Yuan, X. Zhang, Y. Wang, A time reversal focusing based impact imaging method and its evaluation on complex composite structures, Smart Materials and Structures 20 (10) (2011) 105014.
  • [18] I. Park, Y. Jun, U. Lee, Lamb wave mode decomposition for structural health monitoring, Wave Motion 51 (2) (2014) 335– 347.
  • [19] Z. Su, L. Ye, Y. Lu, Guided Lamb Waves for Identification of Damage in Composite Structures: A Review, Journal of Sound and Vibration 295 (3) (2006) 753–780.
  • [20] Z. Su, X. Wang, Z. Chen, L. Ye, D. Wang, A built-in active sensor network for health monitoring of composite structures, Smart Materials and Structures 15 (6) (2006) 1939.
  • [21] H.-Y. Tang, C. Winkelmann, W. Lestari, V. La Saponara, Composite structural health monitoring through use of embedded PZT sensors, Journal of Intelligent Material Systems and Structures 22 (2011) 739.
  • [22] X.P. Qing, S.J. Beard, A. Kumar, T.K. Ooi, F.-K. Chang, Built-in sensor network for structural health monitoring of composite structure, Journal of Intelligent Material Systems and Structures 18 (1) (2007) 39–49.
  • [23] S. Mall, J. Coleman, Monotonic and fatigue loading behavior of quasi-isotropic graphite/epoxy laminate embedded with piezoelectric sensor, Smart Materials and Structures 7 (6) (1998) 822.
  • [24] K. Diamanti, C. Soutis, Structural health monitoring techniques for aircraft composite structures, Progress in Aerospace Sciences 46 (8) (2010) 342–352.
  • [25] C. Soutis, J.-B. Ihn, Design, analysis and structural health monitoring of bonded composite repair and substructure, in: C. Boller, F.-K. Chang, Y. Fujino (Eds.), Encyclopedia of Structural Health Monitoring, John Wiley & Sons, 2009 1923–1940.
  • [26] A. Vlot, GLARE – History of the Development of A New Aircraft Material, Kluwer Academic Publishers, 2001.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63b6f3ef-1e2e-4f22-90cd-24ad7ba8d5d6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.