Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study was to evaluate millimeter-scale deformations in Tallinn, the capital of Estonia, by using repeated leveling data and the synthetic aperture radar (SAR) images of Sentinel-1 satellite mission. The persistent scattered interferometric SAR (PS-InSAR) analysis of images from ascending and descending orbits from June 2016 to November 2021 resulted the line-of-sight (LOS) displacement velocities in the Tallinn city center. Velocity solutions were estimated for the full period of time, but also for shorter periods to monitor deformation changes in yearly basis. The gridded LOS velocity models were used for the decomposition of east-west and vertical velocities. Additionally, the uncertainty of 2D velocity solutions was estimated by following the propagation of uncertainty. The 3D velocity of permanent GNSS station “MUS2” in Tallinn was used to unify the reference of all PS-InSAR velocity solutions. The results of the latest leveling in Tallinn city center in 2007/2008 and 2019 showed rather small subsidence rates which were in agreement with InSAR long-termsolution. However, the short-termInSAR velocity solutions revealed larger subsidence of city center with a rate about –10 mm/yr in 2016–2017, and the uplift around 5 mm/yr in 2018–2019 with relatively stable periods in 2017–2018 and 2019–2021. The inclusion of groundwater level observation data and the geological mapping information into the analysis revealed possible spatiotemporal correlation between the InSAR results and the groundwater level variations over the deep valleys buried under quaternary sediments.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e33, 2023
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor
- Datel AS, Tallinn, Estonia
autor
- Datel AS, Tallinn, Estonia
Bibliografia
- 1. Crosetto, M., Monserrat, O., Cuevas, M. et al. (2011). Spaceborne differential SAR interferometry: Data analysis tools for deformation measurement. Remote Sens., 3, 305–318. DOI: 10.3390/rs3020305.
- 2. Estonian Ministry of Environment. (2017). Geodetic system. Legal Acts of Estonia, Decree No. 64. Retrieved May, 2022 from https://www.riigiteataja.ee/akt/128102011003?leiaKehtiv.
- 3. Ferretti, A., Prati, C., and Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens., 39(1), 8–20. DOI: 10.1109/36.898661.
- 4. Fuhrmann, T., and Garthwaite, M.C. (2019). Resolving Three-Dimensional Surface Motion with InSAR: Constraints from Multi-Geometry Data Fusion. Remote Sens., 11, 241. DOI: 10.3390/rs11030241.
- 5. GPA (2022). Data retrieved May 11, 2022, from https://gpa.maaamet.ee.
- 6. Gruno, A. (2020). Capabilities of remote sensing on the basis of InSAR data to monitor the Tallinn height network. Research Report, AS Datel, p. 30.
- 7. JCGM (2011). Evaluation of measurement data. Supplement 2 to the “Guide to the expression of uncertainty in measurement”. Joint Committee for Guides in Metrology, 102.
- 8. Kall, T., and Torim, A. (2003). Vertical movements on the territory of Tallinn. J. Geodynm., 35(4-5), 511–519. DOI: 10.1016/S0264-3707(03)00011-5.
- 9. KESE (2022). Data retrieved July, 2022 from https://kese.envir.ee.
- 10. Lutsar, R. (1965). Displacements of the benchmarks of the levelling system network of the city of Tallinn. Recent Crustal Movements, No. 2, Academy of Sciences of Estonia, Institute of Physics and Astronomy, Tartu. pp. 288–293.
- 11. Metricus, O.U. (2019). Reconstruction of Tallinn height system. Measurement and adjustment report.
- 12. NGL (2021). Data retrieved November, 2021 from http://geodesy.unr.edu/vlm.php.
- 13. Perissin, D., Wang, Z., and Wang, T. (2011). Sarproz InSAR tool for urban subsidence/manmade structure stability monitoring in China. In Proceedings of the 34th International Symposium for Remote Sensing of the Environment (ISRSE), Sydney, Australia, 10-15 April 2011.
- 14. Smith, W.H.F., and Wessel, P. (1990). Gridding with continuous curvature splines in tension. Geophysics, 55, 293–305. DOI: 10.1190/1.1442837.
- 15. Vaher, R., Miidel, A., Raukas, A. and Tavast, E. (2010). Ancient buried valleys in the city of Tallin and adjacent area. Estonian J. Earth Sci., 59(1), 37. DOI: 10.3176/earth.2010.1.03.
- 16. Vallner, L., and Lutsar, R. (1966). On the deformations of the earth’s surface on the territory of Tallinn. In Proceedings of the Second International Symposium on Recent Crustal Movements. Annales Academiae Scientiarum Fennicae, Series A, III, Geologica-Geographica, 90, Helsinki. pp. 387–394.
- 17. Vestøl, O., Ågren J., Steffen, H. et al. (2019). NKG2016LU: A new land uplift model for Fennoscandia and the Baltic region. J. Geod., 93(9), 1759–1779. DOI: 10.1007/s00190-019-01280-8.
- 18. Wessel, P., Luis, J.F., Uieda, L. al. (2019). The Generic Mapping Tools version 6. Geochem. Geophys. Geosystems, 20, 5556–5564. DOI: 10.1029/2019GC008515.
- 19. XGIS (2022). Data retrieved July, 2022 from https://xgis.maaamet.ee/xgis2/page/app/geoloogia50k.
- 20. Zhelnin, G. (1958). On the stability of benchmark heights of the levelling system network of the city of Tallinn. Tartu, XXXIII (3), 198–218.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63a8b24f-22de-4671-b079-5bba132e95b4