PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification of Potential Phytoaccumulator Plants from Tailings Area as a Gold Phytomining Agent

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Indonesia comprises a high diversity of plant species, some of which may have a potential role as metal phytoaccumulators including gold (Au), known as phytomining agents. Some local plants grown at the metal-contaminated sites can become potential phytoaccumulators due to their adaptation capability to the metal-polluted conditions. Phytomining is one of the eco-friendly methods usually used to extract lowgrade metal bio-ore from the environment and this method can be applied on gold tailing waste. This study aimed to find the hyperaccumulator plants selected from a gold mine area, which can be applied for a gold (Au) phytomining agent. The study was located in Aneka Tambang Inc. (PT. ANTAM-UBPE Pongkor), Bogor, West Java, Indonesia. A vegetation analysis was carried out using a transect experiment on the area around gold mine tailings dam, and the samples were collected for further analysis. Tailings were sampled for metal analysis, while the plant samples including the below-ground and above-ground part of biomass were separated, washed, and weighed for the biomass and metal analyses. The total concentration of gold in the plants and tailings was measured by using a graphite furnace atomic absorption spectrophotometer (GF-AAS). There were 17 plant species identified as gold accumulators collected from the gold mine tailing area, which were potential phytomining agents. The gold measurement showed that all plants species had the ability to absorb gold residues from the tailings dam, indicating that all the plants have a potential role as gold phytoaccumulators. Among the species, Typha angustifolia had the highest importance value index (IVI) followed by Cyperus haspan. The results showed that T. angustifolia and C. haspan were among the plants with the highest potential as Au phytoaccumulators to support the gold phytomining program for the gold mine tailing area.
Rocznik
Strony
169--181
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Graduate student, Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
autor
  • Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
  • Research Center for Limnology, National Research and Innovation Agency Republic of Indonesia, Bogor 16911, Indonesia
  • Research Center for Limnology, National Research and Innovation Agency Republic of Indonesia, Bogor 16911, Indonesia
Bibliografia
  • 1. Alimano M, Rinjani R. 2017. Preliminary Research on Extraction of Gold and Other Metals from Vetiver Plants (Vetiveria zizanioides) Using Wet Chlorination Method. J Tekmira. 13(1):45–51. (in Indonesian)
  • 2. Anderson C, Moreno F, Meech J. 2005. A field demonstration of gold phytoextraction technology. Mine Engine. 18: 385–395.
  • 3. Andriya NN, Hamim H, Sulistijorini, Triadiati. 2019. The phytoremediation potential of non-edible oil-producing plants for gold mine tailings. Biodiv. 20(10): 2949–2957.
  • 4. Asati A, Pichhode M, Nikhil K. 2016. Effect of heavy metals on plants: an overview. IJAIEM. 5(3):56–66.
  • 5. Asmayannur I, Chairul, Syam Z. 2012. The Analysis of Understory Vegetation on Jati Emas (Tectona grandis) and Jati Putih (Gmelina arborea) Stand in Andalas University. J Bio Uni And. 1(2):172–177. (in Indonesian)
  • 6. Aththorick TA. 2005. Similarities of Understorey Communities in Several Types of Plantation Ecosystems in Labuhan Batu Regency. J Kom Pen. 17(5):42–48. (in Indonesian)
  • 7. Bali T, Siegele R, Harris AT. 2010. Phytoextraction of Au: uptake, accumulation and cellular distribution in Medicago sativa and Brassica juncea. J Chem Engine. 156:286–297.
  • 8. Chandra R, Yadav S. 2011. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus. Internat J Phytorem. 13(6): 580–591.
  • 9. Chaney R, Baklanov IA. 2017. Chapter Five – Phytoremediation and Phytomining: Status and Promise. Advan in Botani Res. 83:189–221.
  • 10. Dinh T, Dobo Z, Kovacs H. 2022. Phytomining of noble metals – A review. Chemosphere. 286: 131805. Doi: 10.1016/j.chemosphere.2021.131805.
  • 11. Fashola MO, Ngole-Jeme VM, Babalola OO. 2016. Review heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. Int J Environ Res Pub Health. 3(11):1047. doi: 10.3390/ijerph13111047.
  • 12. Ghani A. 2010. Toxic effects of heavy metals on plant growth and metal accumulation in maize (Zea mays L.). Iran J Toxicol. 3(3): 325–334.
  • 13. Gill SS, Tuteja N. 2010. Polyamines and abiotic stress tolerance in plants. Plant Sign Behav. 5:26–33.
  • 14. Guerra-Sierra BE, Guerrero JM, Sokolski S. 2021. Phytoremediation of Heavy Metals in Tropical Soils an Overview. Sustainability. 13: 2574.
  • 15. Hamim H, Hilmi M, Pranowo D, Saprudin D, Setyaningsih L. 2017a. Morphophysiological changes of biodesel producer plants Reutalis trisperma (Blanco) in respons to gold mining wastewater. Pak J Biol Sci. 20:423–435.
  • 16. Hamim H, Violita V, Triadiati T, Miftahudin M. 2017b. Oxidative stress and photosynthesis reduction of cultivated (Glycine max L.) and wild soybean (G. tomentella L.) exposed to drought and paraquat. Asian J Plant Sci. 16(2): 65–77. doi:10.3923/ajps.2017.65.77
  • 17. Handayanto E, Nuraini Y, Muddarisna N, Syam N, Fiqri A. 2017. Phytoremediation and Phytomining of Heavy Metal Pollutants. Malang: UB Press. (in Indonesian)
  • 18. Heilmeier H., Wiche, O. 2020. The PCA of Phytomining: Principles, Challenges, and Achievments. Carpat J of Earth and Environ Sci. 15(1):37–42.
  • 19. Herlina, L., Widianarko B., Purnaweni H., Sudarno S., Sunoko H.R. 2020. Phytoremediation of lead contaminated soil using croton (Cordiaeum variegatum) plants. J. Ecol. Eng. 21:107–113. https://doi.org/10.12911/22998993/122238
  • 20. Hilmi M, Hamim H, Sulistyaningsih YC, Taufikurahman. 2018. Growth, histochemical and physiological responses of non-edible oil producing plant (Reutealis trisperma) to gold mine tailings. Biodiv. 19(3): 736–742
  • 21. Indriyani L, Flamin A, Erna E. 2017. Diversity Analysis of Understorey Species in the Jompi Forest. Ecogreen. 3(1):49–58. (in Indonesian)
  • 22. Jaffre, T., Reeves, R., Baker, A.J.M., Schat, H. & van der Ent, A., 2018. The discovery of nickel hyperaccumulation in the New Caledonian tree Pycnandra acuminata 40 years on: an introduction to a Virtual Issue. New Phytologist. 218:397–400.
  • 23. Krisnayanti BD, Anderson CWN, Sukartono S, Afandi Y, Suheri H, Ekawanti A. 2016. Phytomining for Artisanal Gold Mine Tailings Management. Miner 6:84–94.
  • 24. Lamhamdi M, Bakrim A, Aarab A, Lafont R, Sayah F. 2010. A comparison of lead toxicity using physiological and enzymatic parameters on spinach (Spinacia oleracea) and wheat (Triticum aestivum) growth. Moroccan J Biol. 6–7:64–73.
  • 25. Magurran AE. 1988. Ecological diversity and its measurement. New Jersey (US): Princeton University Press
  • 26. Malayeri BE, Chehregani A, Yousefi N, Lorestani B. 2008. Identification of the hyperaccumulator plants in copper and iron mine in Iran. Pak Jour of Bio Scien. 11: 490–492.
  • 27. Marshall AT, Haverkamp RG, Davies CE, Parsons JG, Gardea-Torresday JL, van Agterveld D. 2007. Accumulation of gold nanoparticles in Brassica juncea. Int J Phyto. 9: 197–206.
  • 28. Mellem JJ, Baijnath H, Odhav B. 2009. Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. Jour of Environ Sci and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering. 44(6): 568–575.
  • 29. Naila A, Meerdink G, Jayasena V, Sulaiman AZ, Ajit AB, Berta G. 2019. A review on global metal accumulators-mechanism, enhancement, commercial application, and research trend. Environ Sci and Poll Res. 1–23.
  • 30. Noviardi R, Karuniawan A, Sofyan ET, Suryatmana P. 2021. Potential of sweet potato (Ipomoea batatas) for gold phytomining from mercury amalgamation tailings. IOP Conf. Ser.: Earth Environ. Sci. 789 012073 doi:10.1088/1755–1315/789/1/012073
  • 31. Odum E P. 1971. Fundamentals of Ecology. Philadephia: W B Sanders Co.
  • 32. Piccinin R C R, Ebbs S D, Reichman S M, Kolev S D, Woodrow I E and Baker A J M. 2007. A screen of some native Australian flora and exotic agricultural species for their potential application in cyanideinduced phytoextraction of gold. Miner Engine. 20:1327–1330
  • 33. Pranoto BSM., Budianta W. 2020. Phytoremediation of Lead (Pb) and Arsenic (As) Contaminated Soil in Artisanal Gold Mining at Selogiri, Wonogiri District, Central Java, Indonesia. Jour of Applied Geo. 5(2):64–72
  • 34. Rodriguez E, Parsons JG, Peralta-Videa JR, Cruz-Jimenez G, Romero-Gonzalez J, Sanchez-Salcido BE, Saupe GB, Duarte-Gardea M, Gardea-Torresdey JL. 2007. Potential of Chilopsis linearis for gold phytomining: using XAS to determine gold reduction and nanoparticle formation within plant tissues. Int J Phytoremediation. 9(2):133–47. doi: 10.1080/15226510701232807
  • 35. Rondonuwu SB. 2014. Phytoremediation of Mercury Waste Using Plants and Reactor Systems. J Ilm Sains. 14(1): 52–59. https://doi.org/10.35799/jis.14.1.2014.4951 (in Indonesian)
  • 36. Saim, A. K., Ntiri-Bekoh, R., Orleans-Boham, H. Amankwah, R. K. 2020. Gold Phytoextraction by Alocasia macrorrhizos: Implications in Phytomining. Proceedings of 6 th UMaT Biennial International Mining and Mineral Conference, Tarkwa, Ghana, 272–280.
  • 37. Setiawan KA, Sutedjo, Matius P. 2017. Composition of Understorey Types in Revegetation Land Post Coal Mining. J Hut Trop. 1(2):182–195. (in Indonesian)
  • 38. Setyaningsih L, Wulandari AS, Hamim H. 2018. Growth of typha grass (Typha angustifolia) on gold-mine tailings with application of arbuscular mycorrhiza fungi. Biodiv. 19 (2): 504–509. https://doi.org/10.13057/biodiv/d190218
  • 39. Shahid M, Khalid S, Abbas G, Shahid, N, Nadeem M, Sabir M, Aslam M, Dumat C. 2015. Heavy metal stress and crop productivity. In book: Hakeem KR, 36 editor. Crop Production and Global Environmental Issues. Basel (CH): Springer International Publishing. pp 1–25.
  • 40. Sheoran V, Sheoran AS, Poonia P. 2009. Phytomining: a review. Min Engine 22(12):1007–1019.
  • 41. Sheoran V, Sheoran AS, Poonia P. 2013. Phytomining of gold: A review. Jour of Geo Explor. 128:42–50.
  • 42. Sheoran V, Sheoran AS, Poonia P. 2016. Factors affecting phytoextraction: a review. Pedosphere. 26:148–166.
  • 43. Sricoth T, Meeinkuirt W, Pichtel J, Taeprayoon P, Saengwilai P. 2018. Synergistic phytoremediation of wastewater by two aquatic plants (Typha angustifolia and Eichhornia crassipes) and potential as biomass fuel. Environ Sci Pollut Res Int. 25(6):5344–5358. doi: 10.1007/s11356–017–0813–5.
  • 44. Sunariyati S, Amin M, Hakim L. 2017. Potential accumulation of Gold (Au) in several plant species in the Central Kapuas gold mining area. J Peng Ling Berkel. 1(3):33–42. (in Indonesian)
  • 45. Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M. 2011. Review article: a review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Engine. 1–31.
  • 46. Wang YS, Ding MD, Pang Y, Gu XG, Gao LP, Xia T. 2013. Analysis of interfering substances in the measurement of malondialdehyde content in plant leaves. As J Chemist. 25(11):6293–6297.
  • 47. Wei S, Zhou Q, Mathews S. 2008. A newly found cadmium accumulator-Taraxacum mongolium. J Hazard Mat. 159(2):544–547. doi:10.1016/j.jhazmat.2008.02.052
  • 48. Wilson-Corral V, Anderson C, Rodriguez M, Arenas-Vargas M. 2011. Gold phytomining: Phytoextraction of gold and copper from mine tailings with Helianthus annuus L. and Kalanchoe serrata L. Minerals Eng. 24(13):1488–1494. doi:10.1016/j.mineng.2011.07.014
  • 49. Wilson-Corral V, Anderson CWN, Rodriguez-Lopez M. 2012. Gold phytomining. A review of the relevance of this technology to mineral extraction in the 21st century. J Env Manage. 111: 249–257.
  • 50. Wirosoedarmo R, Anugroho F, Mustaqiman AN, Amanah R, Gustinasari K. 2020. Phytoremediation of chrome in batik industry wastewater using Cyperus haspan. Nanotechnol Environ Engin. 5(2):1–9. doi: 10.1007/s41204–019–0064–4
  • 51. Wolfe AK, Bjornstad DJ. 2002. Why would anyone object? An exploration of social aspect of phytoremediation acceptability. Crit Rev in Plant Sci. 21:429–438.
  • 52. Yoon J, Cao X, Zhou O. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on contaminated Florida site. Sci of the Tot Env. 368: 456–464.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63a708bd-0dc6-47e4-8ad0-859243c7d4a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.