Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we study the multiplicity of nonnegative solutions for the following nonlocal elliptic problem [formula] where Ω ⊂ RN is bounded domain with smooth boundary, [formula] M is a Kirchhoff coefficient and L denotes the mixed local and nonlocal operator. The weight function [formula] is allowed to change sign. By applying variational approach based on constrained minimization argument, we show the existence of at least two nonnegative solutions.
Czasopismo
Rocznik
Tom
Strony
523--542
Opis fizyczny
Bibliogr. 45 poz.
Twórcy
autor
- Indian Institute of Technology Bhilai, Department of Mathematics, 491002, Durg, Chhattisgarh, India
Bibliografia
- [1] N. Abatangelo, M. Cozzi, An elliptic boundary value problem with fractional nonlinearity, SIAM J. Math. Anal. 53 (2021), 3577–3601.
- [2] A. Ambrosetti, H. Brezis, G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519–543.
- [3] D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd ed., Camb. Stud. Adv. Math., vol. 116, Cambridge University Press, Cambridge, 2009.
- [4] R. Arora, A. Fiscella, T. Mukherjee, P. Winkert, On double phase Kirchhoff problems with singular nonlinearity, Adv. Nonlinear Anal. 12 (2023), 20220312.
- [5] G. Autuori, A. Fiscella, P. Pucci, Stationary Kirchhoff problems involving a fractional elliptic operator and a critical nonlinearity, Nonlinear Anal. 125 (2015), 699–714.
- [6] G. Barles, E. Chasseigne, A. Ciomaga, C. Imbert, Lipschitz regularity of solutions for mixed integro-differential equations, J. Differential Equations 252 (2012), 6012–6060.
- [7] B. Barrios, E. Colorado, A. de Pablo, U. Sánchez, On some critical problems for the fractional Laplacian operator, J. Differential Equations 252 (2012), 6133–6162.
- [8] B. Barrios, E. Colorado, R. Servadei, F. Soria, A critical fractional equation with concave-convex power nonlinearities, Ann. Inst. H. Poincaré C Anal. Non Linéaire 32 (2015), 875–900.
- [9] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Comm. Partial Differential Equations 47 (2022), 585–629.
- [10] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Faber–Krahn inequality for mixed local and nonlocal operators, J. Anal. Math. 150 (2023), 405–448.
- [11] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Brezis–Nirenberg type result for mixed local and nonlocal operators, arXiv.2209.07502v1.
- [12] S. Biagi, D. Mugnai, E. Vecchi, A Brezis–Oswald approach for mixed local and nonlocal operators, Commun. Contemp. Math. 26 (2024), 2250057.
- [13] S. Biagi, E. Vecchi, On the existence of a second positive solution to mixed local-nonlocal concave-convex critical problems, Nonlinear Anal. 256 (2025), 113795.
- [14] H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc. 88 (1983), 486–490.
- [15] K.J. Brown, Y. Zhang, The Nehari manifold for a semilinear elliptic problem with a sign changing weight function, J. Differential Equations 193 (2003), 481–499.
- [16] X. Cabré, Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 23–53.
- [17] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245–1260.
- [18] E. Colorado, I. Peral, Semilinear elliptic problems with mixed Dirichlet–Neumann boundary conditions, J. Funct. Anal. 199 (2003), 468–507.
- [19] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521–573.
- [20] S. Dipierro, E. Lippi, E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, Asymptot. Anal. 128 (2022), 571–594.
- [21] S. Dipierro, E. Lippi, E. Valdinoci, (Non)local logistic equations with Neumann conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 40 (2023), 1093–1166.
- [22] S. Dipierro, E. Valdinoci, Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes, Physica A 575 (2021), 126052.
- [23] A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal. 94 (2014), 156–170.
- [24] P. Garain, J. Kinnunen, On the regularity theory for mixed local and nonlocal quasilinear elliptic equations, Trans. Amer. Math. Soc. 375 (2022), 5393–5423.
- [25] P. Garain, A. Ukhlov, Mixed local and nonlocal Sobolev inequalities with extremal and associated quasilinear singular elliptic problems, Nonlinear Anal. 223 (2022), 113022.
- [26] J. García-Azorero, I. Peral, Multiplicity of solutions for elliptic problems with critical exponent or with non-symmetric term, Trans. Amer. Math. Soc. 323 (1991), 877–895.
- [27] Y. Il’yasov, On extreme values of Nehari manifold method via nonlinear Rayleigh’s quotient, Topol. Methods Nonlinear Anal. 49 (2017), 683–714.
- [28] G. Kirchhoff, Mechanik, Teubner, Leipzig, Germany, 1883.
- [29] A. Majda, E. Tabak, A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow, Physica D: Nonlinear Phenomena 98 (1996), 515–522.
- [30] A. Maione, D. Mugnai, E. Vecchi, Variational methods for nonpositive mixed local-nonlocal operators, Fract. Calc. Appl. Anal. 26 (2023), 943–961.
- [31] P.K. Mishra, V.M. Tripath, Nehari manifold approach for fractional Kirchhoff problems with extremal value of the parameter, Fract. Calc. Appl. Anal. 27 (2024), 919–943.
- [32] Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101–123.
- [33] Z. Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math. 105 (1961), 141–175.
- [34] J.M. do Ó, X. He, P.K. Mishra, Fractional Kirchhoff problem with critical indefinite nonlinearity, Math. Nachr. 292 (2019), 615–632.
- [35] P. Pucci, V.D. Rˇadulescu, Progress in nonlinear Kirchhoff problems, Nonlinear Anal. 186 (2019), 1–5.
- [36] P. Pucci, M. Xiang, B. Zhang, Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear Anal. 5 (2016), 27–55.
- [37] B. Ricceri, Existence, uniqueness, localization and minimization property of positive solutions for non-local problems involving discontinuous Kirchhoff functions, Adv. Nonlinear Anal. 13 (2024), 20230104.
- [38] R. Servadei, E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent, Rev. Mat. Complut. 28 (2015), 655–676.
- [39] R. Servadei, E. Valdinoci, The Brezis–Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), 67–102.
- [40] J. da Silva, A. Fiscella, V. Viloria, Mixed local-nonlocal quasilinear problems with critical nonlinearities, J. Differential Equations 408 (2024), 494–536.
- [41] K. Silva, A. Macedo, Local minimizer over the Nehari manifold for a class of concave-convex problems with sing changing nonlinearity, J. Differential Equations 265 (2018), 1894–1921.
- [42] X. Sun, Y. Fu, S. Liang, Multiplicity and concentration of solutions for Kirchhoff equations with exponential growth, Bull. Math. Sci. 14 (2024), 2450004.
- [43] E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. 49 (2009), 33–44.
- [44] Y. Wang, S. Huang, H.-R. Sun, Kirchhoff type mixed local and nonlocal elliptic problems with concave–convex and Choquard nonlinearities, J. Pseudo-Differ. Oper. Appl. 15 (2024), Article no. 23.
- [45] T.-F. Wu, On semilinear elliptic equations involving critical Sobolev exponents and sign-changing weight function, Commun. Pure Appl. Anal. 7 (2008), 383–405.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63a65b75-75a8-42e5-bbd8-6eb4fa61e09c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.