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In the present paper, solutions of the equations of uncoupled thermoelastodynamics of ther-
moelastic rods are constructed for power and thermal effects. Based on the Fourier transform,
the Green tensor and generalized solutions of the thermoelasticity equations are constructed
in the original space-time using the apparatus of generalized functions theory. Analytical
formulas for definitions of the thermal stress-strain state of the rods taking into account its
thermoelastic parameters are obtained. Shock thermoelastic waves are considered and con-
ditions on their fronts are obtained. The results of numerical calculations of Green tensor
are presented.
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1. Introduction

The mechanics of thermoelastic media is currently being intensively developed in the world. The
main achievements in this area are related to study of static and quasistatic problems. The most
researched solutions are based on the methods of complete and incomplete separation of variables
for regions with a canonical form of boundaries. But few studies are devoted to solving dynamic
boundary value problems (BVP) of thermoelasticity. The main difficulties are related to the
type of dynamic thermoelastic equations. Dynamic problems of thermoelasticity are connected
with solving the boundary value problems for mixed hyperbolic-parabolic systems of differential
equations, the mathematical theory of which has not yet been sufficiently developed. A complete
system of thermoelasticity equations contains hyperbolic equations for medium displacements
and a parabolic equation for its temperature (Novatskiy, 1970). They are connected with the
gradient of temperature in the first hyperbolic equation and divergence of velocities in the second
parabolic one. It leads to presence of singular solutions – shock thermoelastic waves with jumps
in stresses and velocities at their fronts (Alipova et al., 2017). To construct solutions of such
systems for different external forces and heat sources, the fundamental solution – Green tensor is
used. But fundamental solutions of such systems and solutions of BVPs for them in spaces RN

(N = 1, 2, 3) were constructed only in spaces of Laplace or Fourier transformation over time
(Kupradze et al., 1976; Sharp and Crouch, 1986; Predeleanu, 1987; Ochiai and Ishida, 1988;
Sah and Tasaka, 1988; Alexeyeva and Ahmetzhanova, 2018). For construction in their original
time-space, numerical methods are used. But they are of little use for studying thermoelastic
shock waves.

But by small velocities, it is possible to neglect the divergence of deformation velocity in
the heat equation to construct the solutions in the original space. Then we get the equations of
theory of thermal stresses (uncoupled thermoelasticity). In papers (Alexeyeva et al., 1999), this
model was used for solving the plane BVPs of unsteady thermoelasticity.
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The present paper is devoted to construction of fundamental and regular solutions of uncou-
pled thermoelasticity in the case N = 1 in the original space-time by making use of the theory of
generalized functions. By slow deformation processes, such solutions describe thermodynamics
and the thermally stressed state of thermoelastic rods.

2. Basic relations of the dynamics of thermoelastic rods

We consider a thermoelastic rod which is characterized by a linear density ρ, the velocity of
propagation of elastic waves in the rod, and thermoelastic constants κ, γ. Let us investigate the
thermally stressed state of the rod under the influence of external power and heat sources.
The equations of dynamics of the thermoelastic rod have the form (Novatskiy, 1970)

ρc2u,xx−ρu,tt−γθ,x+ρF1(x, t) = 0
θ,xx−k−1θ,t+F2(x, t) = 0

(2.1)

Here, u(x, t) are the longitudinal displacements of the cross sections of the rod in the section x
at time t, θ(x, t) the relative temperature (θ = T (x, t)−T (x, 0), T is the absolute temperature),
F1(x, t), F2(x, t) are densities of the power and heat sources of perturbations, respectively

u,x=
∂u

∂x
u,xx=

∂2u

∂x2
u,t=

∂u

∂t
u,tt=

∂2u

∂t2
· · ·

The temperature term γθ,x in the first equation for elastic displacements allows one to take into
account the effect of temperature on the stress state of the rod, which is described by the law
of Duhamel-Neumann (Novatskiy, 1970)

σ(x, t) = ρc2u,x−γθ (2.2)

Let us construct solutions of equations (2.1) under the action of various power and heat sources
of perturbations.
Farther we use the following notation

u1 = u u2 = θ ui,x =
∂ui
∂x

ui,t =
∂ui
∂t

i = 1, 2

Equations (2.1) are of the mixed hyperbolic-parabolic type. Due to hyperbolicity, there are
characteristic surfaces F which describe shock thermoelastic waves Ft.
To get the conditions at fronts of shock waves, we consider Eqs. (2.1) in the space of gener-

alized functions (Vladimirov, 1988). According to the rule of differentiation of a regular discon-
tinuous function, its generalized derivatives are equal to

∂û

∂x
=
∂u

∂x
+ [u]F νxδF (x, t)

∂û

∂t
=
∂u

∂t
+ [u]F νtδF (x, t) ν = (νx, νt)

∂2û

∂x2
=
∂2u

∂x2
+
[∂u
∂x

]

F
νxδF (x, t) +

∂

∂x

{
[u]F νxδF (x, t)

}

∂2û

∂t2
=
∂2u

∂t2
+
[∂u
∂t

]

F
νtδF (x, t) +

∂

∂t

{
[u]F νtδF (x)

}

By use these formulas, we get from Eqs. (2.1) equations for thermoelastic shock waves in the
distribution space

ρc2u,xx−ρu,tt−γθ,x+F1(x, t) + (νx[ρc2u,x−γθ]F − ρνt[u,t ]F )δF (x, t)
+ ρc2∂x(u[(x, t)]F δF )− ρ∂t([u(x, t)]F δF ) = 0

θ,xx−κθ,t+F2 + ∂x([θ(x, t)]F νxδF ) + (νx − κ−1νt)[θ,x ]F δF = 0
(2.3)
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where ν = (νx, νt) is the normal to the characteristic surface F in space (x, t) which satisfies the
characteristic equation

∣∣∣∣∣
c2ν2x − ν2t 0
0 ν2x

∣∣∣∣∣ = ν
2
x(c
2ν2x − ν2t ) = 0 (2.4)

From (2.4) it follows that the shock waves Ft move in R
1 with the speed c = −|νx|/νt.

To be a solution to Eqs. (2.1), it is necessary that densities of independent layers must be
equal to 0. In virtue of continuity of the medium: [u]Ft = 0. In virtue of independency of the
simple layer and derivatives

[θ] = 0 [θ,x ] = 0 [c2u,x νx − u,t νt] = 0 (2.5)

from here, Eqs. (2.5) and (2.2) to follow

[σ]Ft = −ρc[u̇]Ft (2.6)

It means that temperature and heat flow are continuous at wave fronts, but stresses have jumps
at the wave front, which is proportional to the jump of velocity.
System (2.1) is a closed system for determining the movement and temperature of the rod,

given the power and heat sources. Its solution can be evaluated using the fundamental solutions
of the thermal conductivity equation and the elastic rod equation. In this case, at first we
construct a solution of second equation of system (2.1), then the first equation of elasticity of
system (2.1) considering the heat flow in the rod as a mass force, which is determined by the
solution of the second equation of system (2.1). This approach is used in the theory of thermal
stresses when calculating the thermo-stresses state of frame structures, beams, buildings, bridges
and other structures.
Here we will evaluate a different approach based on construction of the Green tensor of

connected system (2.1). Knowledge of it allows us not only to build solutions to this system for
any forces and heat sources, but also to solve a wide range of non-stationary boundary value
problems of rod structures.

3. Fundamental solutions of the equations of uncoupled thermoelasticity.

Green’s tensor and its properties

We shall consider construction of solutions to system (2.1) on the space of generalized vector-
-functions, whose components belong to the class of generalized functions of slow growth S′(R2)
(Alipova et al.. 2017). At first, let us consider the fundamental solutions to system (2.1) under
the action of instantaneous concentrated disturbance sources of the form

F1 = δ(x)δ(t)δ
j
1 F2 = δ(x)δ(t)δ

j
2 j = 1, 2 (3.1)

here δji is the Kronecker symbol, δ(·) is the singular delta-function (Vladimirov, 1988).
As the action of the sources F = (F1, F2) is concentrated at the point x = 0 at t = 0, we

construct a solution that satisfies the following radiation conditions

U ji (x, t) = 0 t < 0 ∀x ∈ R1

U ji (x, t)→ 0 |x| → ∞ ∀t > 0
(3.2)

Such a fundamental solution is called Green’s tensor of thermoelasticity equations. We denote
the corresponding matrix of the fundamental solutions by U ji (x, t).
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The components of Green’s tensor have the following physical meaning:

• U11 (x, t) is the longitudinal displacement in the rod under the action of an impulsive con-
centrated force: F1 = δ(x)δ(t), F2 = 0;

• U21 (x, t) is the longitudinal movement in the rod under the action of a concentrated pulsed
temperature source, F1 = 0, F2 = δ(x)δ(t);

• U12 (x, t) is temperature of the rod under the action of a pulsed concentrated force:
F1 = δ(x)δ(t), F2 = 0;

• U22 (x, t) is temperature of the rod under the action of a concentrated pulsed temperature
source: F1 = 0, F2 = δ(x)δ(t).

Knowing Green’s tensor, we can construct a solution to system (2.1) for any sources in the
form of a tensor-functional convolution

uj(x, t) = U
k
j (x, t)Fk(x, t) j, k = 1, 2 (3.3)

(there is summation by the same indices from 1 to 2 everywhere).

4. Fourier transforms of matrices of fundamental solutions

To construct the Green tensor, we use the direct and inverse Fourier transform with respect to
x and t. For regular generalized functions, it has the form

u(ξ, ω) =

∫∫

R2

u(x, t) exp[i(ξx+ ωt)] dx dt

u(x, t) =
1

(2π)2

∫∫

R2

u(ξ, ω) exp[−i(ξx+ ωt)] dξ dω
(4.1)

Lemma 1. The Fourier transform of the matrices of the fundamental solutions of Eqs. (2.1)
has the next form

U
1
1(ξ, ω) =

ξ2 − ik−1ω
c2(λ1 − λ2)

( 1

ξ2 − λ1
− 1

ξ2 − λ2
)

U
2
1(ξ, ω) =

iγ̃ξ

c2(λ1 − λ2)
( 1

ξ2 − λ1
− 1

ξ2 − λ2
)

U
1
2(ξ, ω) = 0 U

2
2(ξ, ω) =

c2ξ2 − ω2
c2(λ1 − λ2)

( 1

ξ2 − λ1
− 1

ξ2 − λ2
)

(4.2)

where λ1 = ω
2/c2, λ2 = iωk

−1, γ̃ = γ/ρ.

Proof. Taking into account the properties of the Fourier transform of the derivatives, the Fourier

transform U
j
i (ξ, ω) satisfies the following system of algebraic equations

− c2ξ2U j1 + ω2U
j
1 + iγ̃ξU

j
2 + δ

j
1 = 0

− ξ2U j2 + ik−1ωU
j
2 + δ

j
2 = 0

(4.3)

The solution of system (4.1), according to Cramer’s formulas, has the form

U
j
1 =
δj1(ξ

2 − iωk−1) + iξγ̃δj2
∆(ξ, ω)

U
j
2 =
δj2(ξ

2c2 − ω2)
∆(ξ, ω)

(4.4)
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where the determinant ∆(ξ, ω) of system (4.3) is equal to

∆(ξ, ω) = c2ξ4 − ω(ω + ik−1c2)ξ2 + ik−1ω3 = c2(ξ2 − λ1)(ξ2 − λ2)

Its roots have the form

λ1,2 =
ω(ω + c2ik−1)± ω

√
(ω + c2ik−1)2 − 4c2ik−1ω
2c2

from here we get

λ1 =
ω2

c2
λ2 = iωk

−1

We represent relations (4.4) in a form more convenient for conversion, using decomposition
into simpler fractions

1

∆(ξ, ω)
=

1

c2(ξ2 − λ1)(ξ2 − λ2)
=

1

c2(λ1 − λ2)
( 1

ξ2 − λ1
− 1

ξ2 − λ2
)

As a result, we obtain the formulas of the lemma. The lemma is proved.

In Fig. 1, the transform and components of the real and imaginary part tensor are shown.

Fig. 1. Real and imaginary parts of U
j

i (ξ, ω) (ω = 10, −5 < ξ < 5)

5. Regularization of Fourier transforms of matrices of fundamental solutions.

Fourier’s transform of Green’s tensor

The Fourier transform (4.4) defines an entire class of fundamental solutions of equations (2.1),
which are determined up to the solution of the homogeneous system in the absence of external
perturbations. To isolate the Fourier transforms of Green’s tensor and their inversion, it is
necessary to regularize formulas (4.4) taking into account radiation conditions (3.2).
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Lemma 2. The Fourier transform of Green’s tensor of thermoelasticity equations can be repre-
sented in the form

U
1
1(ξ, ω) =

ξ2 − ik−1ω
(ω + i0)(ω − ic2k−1) [f1(ξ, ω)− f2(ξ, ω)]

U
2
1(ξ, ω) =

iγξ

c2
(
ω2

c2 − iωk−1
) [f1(ξ, ω)− f2(ξ, ω)]

U
1
2(ξ, ω) = 0 U

2
2(ξ, ω) =

(−iω)2 − c2(−iξ)2
c2(ω + i0)(ω − ic2k−1) [f1(ξ, ω)− f2(ξ, ω)]

(5.1)

where

f1(ξ, ω) =
c2

c2ξ2 − (ω + i0)2 f2(ξ, ω) =
1

ξ2 − (iω + i0)k−1

Proof. The difference in the curly brackets of formulas (4.2) contains the Fourier transforms
of the fundamental solutions of the d’Alembert equation and the heat equation. Indeed, a
function of the form f1(ξ, ω) = [ξ

2−(ω2/c2)]−1, satisfies the equation: [ξ2−(ω2/c2)]f1 = 1,
which is the original corresponding to the d’Alembert wave equation for the fundamental
solution

1

c2
∂2f1
∂t2
− ∂

2f1
∂x2
= δ(t)δ(x) (5.2)

The fundamental solution of this equation, which satisfies the radiation condition, is the
well known Riman function (Vladimirov, 1988)

f1(x, t) =
c

2
H(ct− |x|) (5.3)

where H(t) is the Heaviside function. Its Fourier transform is a regularization of the right-
-hand side of a function of the form

f1(ξ, ω) = Reg
[ c2

c2ξ2 − ω2
]
=

c2

c2ξ2 − (ω + i0)2

which determines original (5.1) with the carrier on the positive time axis t.

Similarly, the second function f2(ξ, ω) = (ξ
2 − iωk−1)−1 satisfies the equation

(ξ2 − iωk−1)f2(ξ, ω) = 1
which in the initial space corresponds to the parabolic heat equation for the fundamental
solution

k−1
∂f2
∂t
− ∂

2f2
∂x2
= δ(t)δ(x)

Its fundamental solution with the carrier on the positive time axis has the form
(Vladimirov, 1988)

f2(x, t) =
H(t)k

2
√
πkt
exp

(
− x

2

4kt

)

f2(ξ, ω) = Reg
[ 1

ξ2 − iωk−1
]
=

k

kξ2 − i(ω + i0)

(5.4)

Both functions satisfy the following conditions (j = 1, 2)

fj(x, t) = 0 t < 0

fj(x, t)→ 0 ∀t |x| → ∞
The lemma is proved.



Green tensor and regular solutions of equations... 233

6. The Green tensor of thermoelasticity equations

To construct the original of the Green tensor, we use the properties of the Fourier transform of
derivatives and convolutions of generalized functions (Vladimirov, 1988).

Theorem 1. The components of Green’s tensor of thermoelasticity equations (2.1) have the
form

U j1 (x, t) = δ
j
1k
−1∂Σ1
∂t
− δj1
∂2Σ1
∂x2
− δj2γ̃

∂Σ1
∂x
− δj1Σ3(t)δ(x) + δ

j
2γ̃
∂Σ2
∂x

U j2 (x, t) = δ
j
2c
2Σ3(x, t) + δ

j
2c
2 ∂
2Σ2
∂x2
− δj2
∂2Σ2
∂t2

j = 1, 2

(6.1)

where

Σ1(x, t) =
k

c
H(ct− |x|)

[ k
c2

(
1− e ck (|x|−ct)

)
+ t− |x|

c

]

Σ2(x, t) = −
k2H(t)

2c2
√
πk

(
e−
c
2

k
t

t∫

0

1√
τ
e
c
2

k
τ− x

2

4kτ dτ −
t∫

0

1√
τ
e−

x
2

4kτ dτ

)

Σ3(x, t) = −
k

c2
H(t)

(
e−
c
2

k
t − 1

) ∂Σ1
∂t
= −k
c
H(ct− |x|)

(
e
c

k
(|x|−ct) − 1

)

∂Σ1
∂x
= − k
c2
H(ct− |x|) sgnx

(
e
c

k
(|x|−ct) + 1

)

∂Σ2
∂x
= −AH(t)

k

(
e−
c
2

k
t

t∫

0

1√
τ
e
c
2

k
τ− x

2

4kτ

x

2τ
dτ −

t∫

0

1√
τ
e−

x
2

4kτ

x

2τ
dτ

)

∂2Σ2
∂t2
= AH(t)

(
c4

k2
e−
c
2

k
t

t∫

0

1√
τ
e
c
2

k
τ− x

2

4kτ dτ − c
2

k
e−
c
2

k
t 1√
τ
e
c
2

k
τ− x

2

4kτ

)

−AH(t)
[
e−
c
2

k
t 1

k
√
τ
e
c
2

k
t− x

2

4kt

(
c2 − x

2

4t2

)
+
x2

4kt2
1√
τ
e−

x
2

4kt

]

∂2Σ2
∂x2

=
AH(t)

2k

{
e−
c
2

k
t

[ t∫

0

1

τ
√
τ
e
c
2

k
τ− x

2

4kτ

( x2

2kτ
− 1

)
dτ

]
−
t∫

0

1

τ
√
τ
e−

x
2

4kτ

( x2

2kτ
− 1

)
dτ

}

Proof. To restore the original, we note that the following differential operators correspond to
the expressions in the numerators of formulas (4.2) in the original space

δj1(ξ
2 − iωk−1) + iξγ̃δj2 ⇐⇒ δj1(k

−1∂t − ∂x∂x)− γ̃δj2∂x
δj2(c

2ξ2 − ω2) ⇐⇒ δj2(∂t − c2∂x∂x)
(6.2)

To reconstruct the original denominator in (4.2), we consider

1

ω(ω − ic2k−1) =
1

ω
× 1

(ω − ic2k−1)

For the first factor, we use regularization

Reg
[
− 1
iω

]
= − 1

i(ω + i0)
⇔ H(t)δ(x)
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The regularization of the second factor, according to the property of the Fourier transform,
corresponds to the function

[ 1

(ω + i0)− ic2k−1
]
⇔ g1(t)δ(x) where g1(t) = e

− c
2
t

k H(t)

Now we use the convolution property of generalized functions (Vladimirov, 1988)

h = f ∗ g ⇔ h = f ∗ g

Consequently, using (5.2) and (5.3) and the convolution property with δ-Dirac’s function,
we obtain

f1(x, t) ∗H(t)δ(x) = f1 ∗
t
H(t) ⇐⇒ f1(ξ, ω)

−i(ω + i0)

f2(x, t) ∗H(t)δ(x) = f2 ∗
t
H(t) ⇐⇒ f2(ξ, ω)

−i(ω + i0)

(6.3)

here the symbol t under the convolution sign means convolution only on t. Consequently

Reg
[ 1
ω
× 1

(ω − ic2k−1)
]
=
1

−iω ×
1

(iω + c2k−1)

⇐⇒ H(t)δ(x) ∗ g1(t)δ(x) = H(t) ∗
t
g1(t)δ(x)

Computing these convolutions, we obtain

H(t) ∗
t
H(t)e−

c
2

k
t =

∞∫

−∞

H(t− τ)H(τ)e− c
2

k
t dτ = − k

c2
H(t)

(
e−
c
2

k
t − 1

)
= Σ3(t)

Σ3(t)δ(x) ∗
t
cH(ct− |x|) = −k

c
H(t)

(
e−
c
2

k
t − 1

)
∗
t
H(ct− |x|) =

= −k
c
H(ct− |x|)

t∫

|x|/c

(
e−
c
2

k
(t−τ) − 1

)
dτ

=
k

c
H(ct− |x|)

[ k
c2

(
1− e ck (|x|−ct)

)
+ t− |x|

c

]
= Σ1(x, t)

Σ3(t)δ(x) ∗
t

kH(t)

2
√
πkt
e−

x
2

4kt = − k
2H(t)

2c2
√
πk

(
e−
c
2

k
t

t∫

0

1√
τ
e
c
2

k
τ− x

2

4kτ dτ −
t∫

0

1√
τ
e−

x
2

4kτ dτ
)
= Σ2(x, t)

In the representation, the Fourier transforms of Green tensor (4.2) in the numerator there
are the Fourier transforms of the differential operators

δj1(ξ
2 − iωk−1) + iξγ̃δj2 ⇔ δj1(k

−1∂t − ∂x∂x)− γ̃δj2∂x
δj2(c

2ξ2 − ω2) ⇔ δj2(∂t − c2∂x∂x)

Then

U j1 (x, t) =
[(
k−1
∂

∂t
− ∂

2

∂x2

)
δj1 − γ̃δ

j
2

∂

∂x

]
Σ1(x, t)− δj1Σ3(t)δ(x) + δ

j
2γ̃
∂Σ2
∂x

U j2 (x, t) = δ
j
2c
2Σ3(x, t) + δ

j
2c
2
( ∂2

∂x2
− δj2
∂2

∂t2

)
Σ2(x, t)
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During differentiating the introduced discontinuous functions, taking into account the rules
for differentiating such functions in the space of generalized functions (Vladimirov, 1988),
we obtain

∂Σ1
∂t
=
k

c

{[ k
c2

(
1− e ck (|x|−ct)

)
+ t− |x|

c

]}

︸ ︷︷ ︸
=0

δ(ct − |x|) + k
c
H(ct− |x|)

(
−e ck (|x|−ct) + 1

)

= −k
c
H(ct− |x|)

(
e
c

k
(|x|−ct) − 1

)

∂Σ1
∂x
=
k

c

[ k
c2

(
1− e ck (|x|−ct)

)
+ t− |x|

c

]

︸ ︷︷ ︸
=0

[δ(x + ct)− δ(x − ct)]

+
k

c
H(ct− |x|)

(
− k
c2
e
c

k
(|x|−ct) c

k
sgnx− sgnx

c

)

= −k
c
H(ct− |x|)

(1
c
e
c

k
(|x|−ct) sgnx+

sgnx

c

)

Here the sum of the first two terms is zero; on the support of a simple layer ct = |x| we
have

[ k
c2

(
1− e ck (|x|−ct)

)
+ t− |x|

c

]

|x|=ct
=
k

c2
(1− e0) + 0 = 0

Simlarly we get all other derivatives in the formulas of this theorem. As one can see, this
tensor is not regular. It contains a singular addend δj1Σ3(t)δ(x).

7. Numerical calculations of the Green tensor. Shock waves

The program for calculating the Green tensor is elaborated in MathLab system. Calculations
of the components of this matrix for different thermoelastic parameters at various points of the
medium with conditional thermoelastic parameters are carried out by ρ = 1, c = 1, γ = 1, k = 2.

The program makes it possible to vary the parameters of the problem, which were carried
out in numerical experiments to determine their influence on the thermodynamics of the rod.
Figures 2a-2f show time variation of the corresponding component of the Green tensor at a fixed
point of the rod: x = 1, 2, 4, 10 and also show a change in the coordinate of the corresponding
component of the Green tensor at a fixed time: t = 1, 2, 4, 10. Here, the jumps of displacements
on the graphs of the function are related to the moment of arrival of the elastic shock wave at
the point xn at time t = xn/c.

To calculate the fundamental stresses, we use Duhamel-Neumann law (2.2).

8. Determination of thermoelastic displacements, temperature and stresses of

the rod under the action of distributed sources

To determine the displacements in the medium under the action of regular forces and heat
sources distributed on (−L,L)

F1(x, t) = F (x, t)H(L − |x|)H(t) F2(x, t) =W (x, t)H(L− |x|)H(t)
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Fig. 2. Green tensor components Uij(xn, tn) = U ji (x, t) at the fixed point and in fixed time

Fig. 3. Thermoelastic stresses under they action of power and heat sources (a,b,c,d)
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we can use the property of convolution with Green’s tensor. The displacements and temperature
in this case are determined in the integral form

u(x, t) = H(t)

t∫

0

dτ

L∫

−L

Uk1reg(x− y, τ)Fk(y, t− τ) dy +H(t)
t∫

0

Σ3(τ)F1(x, t− τ) dτ

θ(x, t) = H(t)

t∫

0

dτ

L∫

−L

Uk2 (x− y, τ)Fk(y, t− τ) dy

where Uk1reg is the regular part of the Green tensor. By singular forces and heat sources, the
solution of hermoelastodynamics equations (2.1) has the form of the convolutions

u(x, t) = Uk1 (x, t) ∗ Fk(x, t) θ(x, t) = Uk2 (x, t) ∗ Fk(x, t)

which are calculated according to the definition of convolution in the space of generalized func-
tions.

9. Conclusion

In the potential theory, the fundamental solutions are used to construct the solution of BVP
by making use of potential of simple and double layers with unknown density, which must
be defined from boundary conditions ((Kupradze et al., 1976). The general functions method
gives possibility to present solution of BVP over boundary conditions, like Green’s formulas.
This method for BVPs of thermoelasticity in the Laplace and Fourier transformation space was
elaborated in (Alexeyeva and Ahmetzhanova, 2018; Alexeyeva et al., 1999). The constructed
here Green’s tensor can be used for solving BVPs of uncoupled thermoelasticity in the original
space-time by both methods.
The results of this study can be used to assess strength and reliability in the operation of core

structures used in engineering and construction of ground and underground facilities (building
supports, columns, robotics, etc.)

This work was supported by grants from the Ministry of Education and Science of the Republic of

Kazakhstan (No. AP09261033, No. AP05132272).
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