Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The correlations between the catchment factors and the contamination of bottom sediments with heavy metals in selected flow-through anthropogenic reservoirs were investigated. The catchment development structure determines the proportions between metals. For the area covered by the study, it was found that the greater the length of the watercourse, the greater the catchment area, the greater the share of industrialized areas, the greater the population density and the salinity of the water. The proportion of industrialised catchments is influenced by the length of the river and the size of the total catchment area. It was found that the greater the share of industrialized areas in the river basin, the higher the population density. Population density is related to the salinity of the water in the stream and the conductivity. The concentration of metals in bottom sediments of anthropogenic overflow reservoirs is related to: the length of the watercourse, the amount of water introduced into the reservoir, the share of industrialized areas, the size of the catchment area and population density. The share of agricultural and forest areas in the total catchment area is related to the concentration of heavy metals in bottom sediments to a much lesser extent. The correlation between the share of agricultural land and the concentration of cadmium in bottom sediments reflects the presence of this metal in mineral fertilizers.
Wydawca
Rocznik
Tom
Strony
7--21
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Institute of Environmental Engineering of PAS
Bibliografia
- 1. Bathi, J.R., Pitt, R., Findlay, R., Clark, S.E., (2008). Analyses of PAHs in urban storm water 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
- 2. Baumann, H.A., Morrison, L., Stengel, D.B., (2009). Metal accumulation and toxicity measured by PAM-chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicology and Environment Safety, 72, 1063–1075.
- 3. Du Laing, G., De Vos, R., Vandecasteele, B., Lesage, E., Tack, F.M., Verloo, M.G., (2008). Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary. Estuar. Coast. Shelf Sci., 77, 589–602.
- 4. Fu, K.D., Su, B., He, D.M., Lu, X.X., Song, J.Y., Huang, J.C., (2012). Pollution assessment of heavy metals along the Mekong River and dam effects. J. Geogr. Sci., 22, 874–884.
- 5. García-Ordiales, E., Esbrí, J.M., Covelli, S., Lopez-Berdonces, M.A., Higueras, P.L., Loredo, J., (2016). Heavy metal contamination in sediments of an artificial reservoir impacted by long-term mining activity in the Almadén mercury district (Spain). ESPR, 23(7), 6024–6038.
- 6. Gierszewski, P., (2008). Koncentracja metali ciężkich w osadach zbiornika włocławskiego jako wskaźnik hydrodynamicznych warunków depozycj, Landform Analysis, Vol. 9, 79–82.
- 7. Grochowska, J., (2016). Spływ powierzchniowy wapnia, magnezu, żelaza, manganu oraz azotu i fosforu ze zlewni Górnej Pasłęki, Woda – Środowisko – Obszary Wiejskie, (X–XII), No. 16, Vol. 4 (56), pp. 33–42.
- 8. Hudson, Ch., Carignan, R., (2008). Cumulative impacts of Hydrology and human activities on water quality in the St. Lawrence River (Lake Saint-Pierre, Quebeck, Canada). Canadian Journal of Fisheries and Aquatic Sciences, Vol. 65 pp. 1165–1180.
- 9. Jaguś, A., Rzętała, M., (2011). Influence of agricultural anthropopression on water quality of the dam reservoirs. Ecological Chemistry and Engineering S, 18, 3, pp. 359–367.
- 10. Jancewicz, A., Dmitruk, U., Sośnicki, Ł., Tomczuk, U., Bartczak, A., (2012). Wpływ zagospodarowania zlewni na jakość osadów dennych w wybranych zbiornikach zaporowych. Ochrona Środowiska, Vol. 34, no. 4.
- 11. Kalinowski, R., Załęska-Radziwiłł, M., (2009). Determining the quality standards of sediments on the basis of the ecotoxicological studies, Ochrona Środowiska i Zasobów Naturalnych, 40, pp. 549–560.
- 12. Koc, J., Szymczyk, S., (2003). Wpływ intensyfikacji rolnictwa na odpływ wapnia i magnezu z gleb. Journal of Elementology, Vol. 8, No. 4, pp. 231–238.
- 13. Kostecki, M., Kowalski, E., (2019). Policyclic Aromatic Hydrocarbons in Bottom Sediments of selected Anthropogenic Reservoirs in Terms of Catchment Area Development. Water, Air Soil Pollution, 230. 292. DOI:10.1007/s11270-019-4331-6
- 14. Kostecki, M., (2014). Rekultywacja antropogenicznego zbiornika wodnego Pławniowice metodą usuwania hypolimnionu – studium limnologiczne. Prace i Studia IPIŚ PAN w Zabrzu, No. 84, 1–221.
- 15. Kostecki, M., (2007). Bioakumulacja metali ciężkich w wybranych elementach antropogenicznych ekosystemów wodnych Górnośląskiego Okręgu Przemysłowego. Prace i Studia IPIŚ PAN w Zabrzu, No. 71, 1–87.
- 16. Kostecki, M., (2003). Alokacja i przemiany wybranych zanieczyszczeń w zbiornikach zaporowych hydrowęzła rzeki Kłodnicy i Kanale Gliwickim, Prace i Studia IPIŚ PAN w Zabrzu, No. 57, 1–124.
- 17. Kostecki, M., (2000b). Zawiesina jako element zanieczyszczenia antropogenicznego ekosystemu wodnego na przykładzie zbiornika zaporowego Dzierżno Duże (woj. śląskie). Archiwum Ochrony Środowiska, Vol. 26, No. 4, pp. 75–94.
- 18. Lecce, S.A., Pavlowsky, R.T., (2014). Floodplain storage of sediment contaminated by mercury and copper from historic gold mining at Gold Hill, North Carolina., USA. Geomorphology, 206, 122–132.
- 19. Machowski, R., Martyna, A., Rzetala, M., Solarski, M., (2019). Anthropogenic enrichment of the chemical composition of bottom sediments of water bodies in the neighborhood of a non-ferrous metal smelter (Silesian Upland, Southern Poland), Scientific Reports, Vol. 9.
- 20. Martínez-Santos, M., Probst, A., García-García, J., Ruiz-Romera, E., (2015). Influence of anthropogenic inputs and a high-magnitude flood event on metal contamination pattern in surface bottom sediments from the Deba River urban catchment. Sci. Total Environ., 514, 10–25.
- 21. Moses, S.A., Janaki, L., Justus, J., Vimala, S.R., (2011). Influence of lake morphology on water quality, Environmental Monitoring and Assessment, Vol. 182, Issue: 1–4, pp. 443–454.
- 22. Ociepa, A., Pruszek, K., Lach, J., Ociepa, E., (2008). Wpływ długotrwałego nawożenia gleb obornikiem i osadem ściekowym na wzrost zawartości metali ciężkich w glebach. Ecological Chemistry and Engineering. S, Vol. 15, no. 1, 103–109.
- 23. Palma, P., Ledo, L., Alvarenga, P., (2015). Assessment of trace element pollution and its environmental risk to fresh water sediments influenced by anthropogenic contributions: The case study of Alqueva reservoir (Guadiana Basin). Catena, 128, 174–184.
- 24. Rout, G., Das, P., (2003). Effect of metal toxicity on plant growth and metabolism. I. Zinc. Agronomie, 23, 3–11.
- 25. Rzętała, M., (2009). Funkcjonowanie zbiorników wodnych oraz przebieg procesów limnicznych w warunkach zróżnicowanej antropopresji na przykładzie Regionu Górnośląskiego, Katowice: Wyd. Silesian University, p. 171.
- 26. Sedlácek, J., Bábek, O., Nováková, T., (2017). Sedimentary record and anthropogenic pollution of a complex, multiplesource fed dam reservoirs: An example from the Nové Mlýny reservoir, Czech Republic. Sci. Total Environ., 574, 1456–1471.
- 27. Sojka, M., Jaskóła, J., Siepak, M., (2019). Heavy metals in bottom sediments of reservoirs in the lowland Area of Western Poland: Concentrations, Distribution, Sources and Ecological Risk, Water, 11 (1), 56, https://doi.org/10.3390/w11010056
- 28. Stefanidis, K., Papastergiadou, E., (2012). Relationships between lake morphometry, water quality, and aquatic macrophytes, in Greek lakes. Fresenius Environmental Bulletin, 21(10), 3018–3026.
- 29. Suresh, G., Sutharsan, P., Ramasamy, V., Venkatachalapathy, R., (2012). Assessment of spatial distribution and potential ecological risk of the heavy metals in relation to granulometric contents of Veeranam lake sediments, India. Ecotoxicol. Environ. Saf., 84, 117–124.
- 30. Stein, E.D., Tiefenthaler, L.L., Schiff, K., (2006). Watershed–based sources of polycyclic aromatic hydrocarbons in urban storm water. Environmental Toxicology and Chemistry, 25, 373–285.
- 31. Stocker, R., Imberger, J., (2003). Horizontal transport and dispersion in the Surface layer of a medium‐sized lake, Limnol. Oceanogr., 48(3), 971–982, doi.org/10.4319/lo.2003.48.3.0971
- 32. Szpakowska, B., Świerk, D., Gołdyn, R., Barałkiewicz, D., (2014). Contens of Cu, Zn, Cf, Pb, and Fe in rainfall water effluents discharged to surface water sin the city of Poznań, J. Elem. S, 779–794, DOI: 10.5601/jelem.2014.19.2.522
- 33. Wang, Y., Yang, L., Kong, L., Liu, E., Wang, L., Zhu, J., (2015). Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China. Catena, 125, 200–205.
- 34. Wilson, D.C., (2018). Potential urban runoff impacts and contaminant distributions in shoreline and reservoir environments of Lake Havasu, southwestern United States. Sci. Total Environ., 621, 95–107.
- 35. Wojciechowska, E., Nawrot, N., Walkusz-Miotk, J., Matej-Łukowicz, K., Pazdro, K., (2019). Heavy Metals in Sediments of Urban Streams: Contamination and Health Risk Assessment of Influencing Factors, Sustainability, 11(3), 563. https://doi.org/10.3390/su11030563
- 36. Yongming, H., Peixuan, D., Junji, C., Posmentier, E.S., (2006). Multivariate analysis of heavy metal contamination in urban dusts of Xi’an, Central China. Sci. Total Environ, 355, 176–186.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63a25dae-2177-48f8-9966-da6617852691
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.