
JAISCR, 2016, Vol. 6, No. 3, pp. 173Zheng Yin, Conall O’Sullivan, Anthony Brabazon

[48] B. Blair, S.H. Poon and S. J. Taylor. Forecasting
S&P 100 Volatility: the Incremental Information
Content of Implied Volatilities and High Frequency
Index Returns. Journal of Econometrics, vol. 105
(1), pp. 5-26, 2001.

[49] B.J. Christensen and N.R. Prabhala. The Rela-

tion Between Implied and Realized Volatility. Jour-
nal of Financial Economics, vol. 50, pp. 125-150,
1998.

[50] L. Canina and S. Figlewski. The Informational
Content of Implied Volatility. The Review of Fi-
nancial Studies, vol. 6, no. 3, pp. 659-681, 1993.

SELF-CONFIGURING HYBRID EVOLUTIONARY
ALGORITHM FOR FUZZY IMBALANCED

CLASSIFICATION WITH ADAPTIVE INSTANCE
SELECTION

Vladimir Stanovov, Eugene Semenkin, Olga Semenkina

Institute of Computer Science and Telecommunications, Siberian State Aerospace
University Krasnoyarskii rabochii ave. 31, 660014, Krasnoyarsk, Russian Federation

Abstract

A novel approach for instance selection in classification problems is presented. This adap-
tive instance selection is designed to simultaneously decrease the amount of computation
resources required and increase the classification quality achieved. The approach gener-
ates new training samples during the evolutionary process and changes the training set
for the algorithm. The instance selection is guided by means of changing probabilities,
so that the algorithm concentrates on problematic examples which are difficult to clas-
sify. The hybrid fuzzy classification algorithm with a self-configuration procedure is used
as a problem solver. The classification quality is tested upon 9 problem data sets from
the KEEL repository. A special balancing strategy is used in the instance selection ap-
proach to improve the classification quality on imbalanced datasets. The results prove the
usefulness of the proposed approach as compared with other classification methods.
Keywords: Fuzzy classification, instance selection, genetic fuzzy system, self-configuration

1 Introduction

Today the area of machine learning (ML) tech-
niques is quickly developing due to recent advances
in computer and internet technologies. These ad-
vances led to the need to process, analyse and un-
derstand massive amounts of data. Modern ma-
chine learning methods often use evolutionary al-
gorithms (EAs) as design techniques to adjust the
weights or define the structure of the solution. The
classical evolutionary algorithm – the genetic algo-
rithm (GA) is a powerful method, although there
is a set of specialized approaches for various prob-
lems, such as neural network structure design and
weight adjustment, neuro-fuzzy inference system
design, fuzzy rule base design, etc. The special-
ized evolutionary algorithms applied to solve ma-

chine learning problems are called genetics-based
machine learning methods (GBML). A typical ap-
plication of such methods is solving of classifica-
tion problems [1-3].

In this paper we focus on fuzzy classification
methods, i.e. fuzzy rule bases. There is a set of
GBML approaches used to solve the problem of
a fuzzy rule base design for classification. These
methods differ in several ways: some of them opti-
mize the positions and shape of fuzzy terms, while
others optimize the rules and their combinations.
The so-called Pittsburg approach, when an individ-
ual in the EA is a rule base, is used more often
than the Michigan algorithm, when an individual is
a single rule. However, the methods which combine
both the Michigan and Pittsburg approaches seem to
be the most promising.

 – 188
10.1515/jaiscr-2016-0013

174 Vladimir Stanovov, Eugene Semenkin, Olga Semenkina

In the case of solving real-world classifica-
tion problems, researchers may face different is-
sues related to the data available. These issues are:
too large or too small amount of data available,
large numbers of classes, irrelevant features and in-
stances, errors in data measurements and missing
data, imbalances in the amount of data per class
and so on. These issues may cause serious difficul-
ties in learning the actual background of the real-
world process and representing it in a classification
model. In this paper we focus on two main prob-
lems: a large amount of data and an imbalance in
the number of instances.

The problem of a large amount of data can be
solved with data reduction methods (DR). There are
several groups of methods, including training set
selection (TSS), active learning, instance selection
(IS) and feature selection. In our work we concen-
trate on instance selection methods, which are used
for supervised learning problems, such as classifica-
tion. Instance selection and feature selection meth-
ods are divided into two groups: filter and wrapper
approaches.

Instance selection is strongly connected to the
problem of irrelevant instances in the training sam-
ple. Removing instances from the training set does
not necessarily lead to the loss of information, es-
pecially in the case of a large number of training
examples. So, the instance selection method can
be not only a way to decrease the computational
complexity of an algorithm, but also a method to in-
crease the overall accuracy of the resulting model.
The idea behind this study is the development of
a method for selecting the instances in such a way
in order to increase the learning capabilities of a
GBML algorithm.

As a GBML method for our experiments, we
used our modification of the hybrid fuzzy evolu-
tionary algorithm, originally proposed by the H.
Ishibuchi group. Our modifications include self-
configuration, parameter tuning and some adjust-
ments for imbalanced datasets. Unlike our previous
work, in this paper we perform instance selection
testing for different parameters and also consider
the influence of instance selection on various clas-
sification measures. Special attention is paid to the
class imbalance problem.

The rest of the paper is organized as follows:
Section 2 describes the classification method, Sec-

tion 3 contains the description of an instance selec-
tion approach, Section 4 contains the experimental
results, and Section 5 concludes the paper.

2 Hybrid fuzzy GBML algorithm

The original hybrid fuzzy evolutionary algorithm
was introduced by H. Ishibuchi et. al. in [4]. How-
ever, as we developed our method from scratch, we
provide a short description of our implementation.

The main loop of the evolutionary algorithm
implements the Pittsburg approach, i.e. each indi-
vidual is a rule base. The number of rules in the
rule base is not fixed and may change during the
evolutionary process for every individual.

There were four different fuzzy partitions used,
namely partitions into 2, 3, 4 and 5 fuzzy terms, as
well as the “don’t care” condition, resulting in 15
fuzzy sets A0-A14. The fuzzy sets are presented in
Figure 1.

Figure 1. Fuzzy partitions

Each rule was represented as an integer string num-
ber from 0 to 14. The Pittsburg-type algorithm con-
sists of the following steps:

1 Initialization using instances from the training
set

2 Fitness calculation

3 Selection, Crossover, Mutation

4 Apply the Michigan-style part to each individual

5 If stopping criteria are not satisfied, go to step 2.

175Vladimir Stanovov, Eugene Semenkin, Olga Semenkina

In the case of solving real-world classifica-
tion problems, researchers may face different is-
sues related to the data available. These issues are:
too large or too small amount of data available,
large numbers of classes, irrelevant features and in-
stances, errors in data measurements and missing
data, imbalances in the amount of data per class
and so on. These issues may cause serious difficul-
ties in learning the actual background of the real-
world process and representing it in a classification
model. In this paper we focus on two main prob-
lems: a large amount of data and an imbalance in
the number of instances.

The problem of a large amount of data can be
solved with data reduction methods (DR). There are
several groups of methods, including training set
selection (TSS), active learning, instance selection
(IS) and feature selection. In our work we concen-
trate on instance selection methods, which are used
for supervised learning problems, such as classifica-
tion. Instance selection and feature selection meth-
ods are divided into two groups: filter and wrapper
approaches.

Instance selection is strongly connected to the
problem of irrelevant instances in the training sam-
ple. Removing instances from the training set does
not necessarily lead to the loss of information, es-
pecially in the case of a large number of training
examples. So, the instance selection method can
be not only a way to decrease the computational
complexity of an algorithm, but also a method to in-
crease the overall accuracy of the resulting model.
The idea behind this study is the development of
a method for selecting the instances in such a way
in order to increase the learning capabilities of a
GBML algorithm.

As a GBML method for our experiments, we
used our modification of the hybrid fuzzy evolu-
tionary algorithm, originally proposed by the H.
Ishibuchi group. Our modifications include self-
configuration, parameter tuning and some adjust-
ments for imbalanced datasets. Unlike our previous
work, in this paper we perform instance selection
testing for different parameters and also consider
the influence of instance selection on various clas-
sification measures. Special attention is paid to the
class imbalance problem.

The rest of the paper is organized as follows:
Section 2 describes the classification method, Sec-

tion 3 contains the description of an instance selec-
tion approach, Section 4 contains the experimental
results, and Section 5 concludes the paper.

2 Hybrid fuzzy GBML algorithm

The original hybrid fuzzy evolutionary algorithm
was introduced by H. Ishibuchi et. al. in [4]. How-
ever, as we developed our method from scratch, we
provide a short description of our implementation.

The main loop of the evolutionary algorithm
implements the Pittsburg approach, i.e. each indi-
vidual is a rule base. The number of rules in the
rule base is not fixed and may change during the
evolutionary process for every individual.

There were four different fuzzy partitions used,
namely partitions into 2, 3, 4 and 5 fuzzy terms, as
well as the “don’t care” condition, resulting in 15
fuzzy sets A0-A14. The fuzzy sets are presented in
Figure 1.

Figure 1. Fuzzy partitions

Each rule was represented as an integer string num-
ber from 0 to 14. The Pittsburg-type algorithm con-
sists of the following steps:

1 Initialization using instances from the training
set

2 Fitness calculation

3 Selection, Crossover, Mutation

4 Apply the Michigan-style part to each individual

5 If stopping criteria are not satisfied, go to step 2.

SELF-CONFIGURING HYBRID EVOLUTIONARY ALGORITHM FOR . . .

The Michigan part contain the following steps:

1 Define each rule in a rule base as an individual
and calculate its fitness

2 Remove or add new rules to the rule base with
genetic or heuristic approach

3 Return the modified rule base to the population.

Let us describe each step in detail. The initializa-
tion procedure uses instances from the training set
to generate new rules. This step is important as in
the case of a large number of features it is difficult
to randomly generate a rule which would describe
at least one instance correctly. To generate a rule, a
random instance is taken from the sample, and the
membership values µ are calculated for each vari-
able for all fuzzy sets. After this, the probability of
a fuzzy set to be selected is determined as

P(A j) =
µA j(xpi)

∑14
k=1 µA j(xpi)

The same procedure is repeated for all variables.
Next, for every variable the fuzzy set number is
changed to “Don’t care” condition with 0.9 proba-
bility. After generating a rule, the confidence value
is calculated using the sample available:

Con f (Aq →Classk) =
∑xp∈Classk µAq(xp)

∑m
p=1 µAq(xp)

If the confidence value is larger than 0.5, then the
fuzzy rule is added into the rule base.

The class number associated with a rule is
not coded in the chromosome, and is determined
heuristically using confidence values. For this pur-
pose, the confidence values are calculated for all
classes for every rule, and the class number corre-
sponding to the largest confidence value is set.

The rule weight [5] is also calculated using con-
fidence value:

The classification is performed by determining the
winner-rule, i.e. the rule that has the largest µAq(xp)

CFq value. The instance is classified into a class,
corresponding to the winner-rule.

We generated rules 20 times for each individual,
and the maximum number of rules in the algorithm
was limited to 40. If all the rules received confi-
dence values lower than 0.5, i.e. the rule base was
empty, than the generation procedure was repeated.

The fitness value for all individuals was calcu-
lated as a combination of three main criteria, the
training sample error f1(i), the number of rules f2(i),
and the total length of all rules f3(i). The training
sample error was the percentage with weight coeffi-
cient w1=100, the two other criteria were used with
weights w2=1 and w3=1.

For the selection step we applied three classi-
cal selection schemes, i.e. fitness proportional, rank
and tournament selection with tournament size of 2.

There was only one specialized crossover oper-
ator used, which combines two rule bases to pro-
duce one offspring. For this purpose, the number
of rules for the offspring is determined as a random
number from 1 to |S1|+|S2|, where |Si| is the num-
ber of rules for individual i. If |S1|+|S2|exceeds the
maximum number of rules (i.e. 40 in our computa-
tional experiments) then the number of rules is set
to be equal to this maximum number. After this, the
rule base is filled with new rules in a random way
from a general rule pool created from parents’ rules.

The mutation step is similar to the one used in
GAs. The probability of a gen (fuzzy set) to be
changed is defined as 1/(n· jS1|) for average muta-
tion, 3/(n· jS1|) for strong mutation and 1/(3·n · jS1|)
for weak mutation, where n is the number of vari-
ables. Each of the fuzzy sets in a rule base could
mutate, including “Don’t care” conditions. If the
confidence value of a fuzzy rule after the use of
the mutation operator becomes lower than 0.5, the
rule is excluded from the rule base. If there are no
rules left after mutation then several rules are gener-
ated using the same procedure as at the initialization
step.

The Michigan-style part is applied to every rule
base after the mutation operator. At the first step,
the fitness values are calculated for every rule. The
rule fitness is equal to the number of instances cor-
rectly classified with this rule. If there are two iden-
tical rules, only one of them gets the non-zero fit-
ness value. There were three types of the Michigan

SELF-CONFIGURING HYBRID EVOLUTIONARY ALGORITHM FOR . . .

3 Return the modified rule base to the population.

Let us describe each step in detail. The initializa-
tion procedure uses instances from the training set
to generate new rules. This step is important as in
the case of a large number of features it is difficult
to randomly generate a rule which would describe
at least one instance correctly. To generate a rule, a
random instance is taken from the sample, and the
membership values µ are calculated for each vari-
able for all fuzzy sets. After this, the probability of
a fuzzy set to be selected is determined as

P(A j) =
µA j(xpi)

∑14
k=1 µA j(xpi)

The same procedure is repeated for all variables.
Next, for every variable the fuzzy set number is
changed to “Don’t care” condition with 0.9 proba-
bility. After generating a rule, the confidence value
is calculated using the sample available:

Con f (Aq →Classk) =
∑xp∈Classk µAq(xp)

∑m
p=1 µAq(xp)

If the confidence value is larger than 0.5, then the
fuzzy rule is added into the rule base.

The class number associated with a rule is
not coded in the chromosome, and is determined
heuristically using confidence values. For this pur-
pose, the confidence values are calculated for all
classes for every rule, and the class number corre-
sponding to the largest confidence value is set.

The rule weight [5] is also calculated using con-
fidence value:

CFq =Con f (Aq →Classk)−
M

∑
k=1,k ̸=Cq

Con f (Aq →Classk)

.

.

.

176 Vladimir Stanovov, Eugene Semenkin, Olga Semenkina

part: adding new rules, deleting rules and replacing
rules, i.e. first deleting, then adding. In the case of
deleting rules, the number of rules k to be deleted is
defined as 5 · (k−1)<|S|< 5 · k. The rules with the
lowest fitness values are deleted first. In the case of
adding new rules, the number of rules to be added
is defined in the same way as for deleting, but if the
number of rules exceeds the maximum number of
rules then no rule is added.

New rules are added with the use of two differ-
ent methods, heuristic and genetic ones. The heuris-
tic method uses incorrectly classified instances to
generate new rules using the same procedure as at
the initialization step. The genetic method uses
rules from the rule base to produce new rules with
the tournament selection, uniform crossover and av-
erage mutation as in the genetic algorithm.

One of the modifications of the original algo-
rithm was the self-configuration procedure which
was implemented for selection, mutation, the
Michigan part and adding rules in the Michigan
part. The self-configuration method was first intro-
duced in [6, 7] and was successfully applied to a
similar problem in [8]. The main idea of the method
is the assigning to genetic operators of the probabil-
ities to be used in the future based on their success
in the past. The method uses averaged fitness values
of offspring generated by a certain operator to select
a winner-operator at each generation. The winner’s
probability increases, while all other operators get
their probabilities decreased.

We will describe this method in detail. Let z be
the number of different operators of the i− th type.
The starting probability values are set to pi = 1/z.
The success estimation for every type of operator is
performed based on the averaged fitness values:

AvgFiti =
1
2

ni

∑
j=1

fi j, i = 1,2, . . . ,z,

where ni is the number of offspring formed with the
i-th operator, fi j is the fitness value of the j-th off-
spring, produced with the i-th operator, AvgFiti is
the average fitness of the solutions, produced with
the i-th operator. Then the probability of apply-
ing the operator, whose AvgFiti value is the highest
among all the operators of this type, is increased by
(z ·K−K)/(z ·N), and the probabilities of applying
other operators are decreased by K/(z ·N), where

N is the number of evolutionary algorithm genera-
tions, K is a constant value usually equal to 0.5.

3 Adaptive instance selection algo-
rithm for imbalanced classifica-
tion problems

As we mentioned in the Introduction, data reduc-
tion does not necessary lead to lower classification
quality. In some cases excluding instances from
the training set may lead to classification quality
improvement, because the deleted instances were
noisy, repeated many times and so on.

So, most of the instance selection methods are
focused on both data reduction and classification
quality improvement [9, 10]. However, these meth-
ods are mainly designed to create a subset only
once, and not to train an accurate classifier.

The proposed instance selection algorithm is
designed for learning algorithms which use a lot of
iterations during the learning process. This method
does not require any data preprocessing, it is not
based on the k−NN method and does not require
the distance to be calculated between instances. In-
stead, instances are selected based on classification
quality, i.e. it implements the wrapper approach.

Let us describe the idea in detail. At the first
stage, a subsample of the training sample is cre-
ated, having a fixed size (set by user). At this step,
the instances are selected with equal probabilities.
After this, the learning process starts for a number
of generations (iterations), called the adaptation pe-
riod. Only the training subset is used.

Here every instance receives a counter value Ui,
which means the number of successful uses of the
i-th instance. At the beginning, all Ui = 1, i=1. . . n,
and then are changed for every instance. At the end
of the adaptation period, the best current solution,
i.e. best classifier, for the subsample is used to up-
date the counter values. Only the counters of the in-
stances which are in the subsample are updated. If
an instance j was classified correctly, then Uj=Uj+1,
otherwise Uj=1.

So, the sample instances which were classified
correctly get their counters updated, while the coun-
ters for incorrectly classified measurements are re-
set. After the update of counters, a new subsample

177Vladimir Stanovov, Eugene Semenkin, Olga Semenkina

part: adding new rules, deleting rules and replacing
rules, i.e. first deleting, then adding. In the case of
deleting rules, the number of rules k to be deleted is
defined as 5 · (k−1)<|S|< 5 · k. The rules with the
lowest fitness values are deleted first. In the case of
adding new rules, the number of rules to be added
is defined in the same way as for deleting, but if the
number of rules exceeds the maximum number of
rules then no rule is added.

New rules are added with the use of two differ-
ent methods, heuristic and genetic ones. The heuris-
tic method uses incorrectly classified instances to
generate new rules using the same procedure as at
the initialization step. The genetic method uses
rules from the rule base to produce new rules with
the tournament selection, uniform crossover and av-
erage mutation as in the genetic algorithm.

One of the modifications of the original algo-
rithm was the self-configuration procedure which
was implemented for selection, mutation, the
Michigan part and adding rules in the Michigan
part. The self-configuration method was first intro-
duced in [6, 7] and was successfully applied to a
similar problem in [8]. The main idea of the method
is the assigning to genetic operators of the probabil-
ities to be used in the future based on their success
in the past. The method uses averaged fitness values
of offspring generated by a certain operator to select
a winner-operator at each generation. The winner’s
probability increases, while all other operators get
their probabilities decreased.

We will describe this method in detail. Let z be
the number of different operators of the i− th type.
The starting probability values are set to pi = 1/z.
The success estimation for every type of operator is
performed based on the averaged fitness values:

AvgFiti =
1
2

ni

∑
j=1

fi j, i = 1,2, . . . ,z,

where ni is the number of offspring formed with the
i-th operator, fi j is the fitness value of the j-th off-
spring, produced with the i-th operator, AvgFiti is
the average fitness of the solutions, produced with
the i-th operator. Then the probability of apply-
ing the operator, whose AvgFiti value is the highest
among all the operators of this type, is increased by
(z ·K−K)/(z ·N), and the probabilities of applying
other operators are decreased by K/(z ·N), where

N is the number of evolutionary algorithm genera-
tions, K is a constant value usually equal to 0.5.

3 Adaptive instance selection algo-
rithm for imbalanced classifica-
tion problems

As we mentioned in the Introduction, data reduc-
tion does not necessary lead to lower classification
quality. In some cases excluding instances from
the training set may lead to classification quality
improvement, because the deleted instances were
noisy, repeated many times and so on.

So, most of the instance selection methods are
focused on both data reduction and classification
quality improvement [9, 10]. However, these meth-
ods are mainly designed to create a subset only
once, and not to train an accurate classifier.

The proposed instance selection algorithm is
designed for learning algorithms which use a lot of
iterations during the learning process. This method
does not require any data preprocessing, it is not
based on the k−NN method and does not require
the distance to be calculated between instances. In-
stead, instances are selected based on classification
quality, i.e. it implements the wrapper approach.

Let us describe the idea in detail. At the first
stage, a subsample of the training sample is cre-
ated, having a fixed size (set by user). At this step,
the instances are selected with equal probabilities.
After this, the learning process starts for a number
of generations (iterations), called the adaptation pe-
riod. Only the training subset is used.

Here every instance receives a counter value Ui,
which means the number of successful uses of the
i-th instance. At the beginning, all Ui = 1, i=1. . . n,
and then are changed for every instance. At the end
of the adaptation period, the best current solution,
i.e. best classifier, for the subsample is used to up-
date the counter values. Only the counters of the in-
stances which are in the subsample are updated. If
an instance j was classified correctly, then Uj=Uj+1,
otherwise Uj=1.

So, the sample instances which were classified
correctly get their counters updated, while the coun-
ters for incorrectly classified measurements are re-
set. After the update of counters, a new subsample

SELF-CONFIGURING HYBRID EVOLUTIONARY ALGORITHM FOR . . .

is created, using new counters. The probability for
an instance i to be selected is calculated using the
equation:

pi =
1/Ui

∑ j=1,n 1/Uj

According to this equation, increasing the counter
leads to a decrease in the probability of an instance
being included into the subsample. The denomina-
tor in this case is needed for normalization.

Thus, the adaptive instance selection algorithm
assigns lower probabilities for instances which are
easier to classify. At the same time, instances which
are difficult to classify or those which have not been
used before get larger probabilities to be selected
in the new training sample. This procedure imple-
ments two main principles: the exploration of areas
of the feature space unknown before, and using in-
formation about classification quality to build a bet-
ter separation between classes.

During the learning process, the best solution
for every subsample is changed after every adapta-
tion period, as it depends on the instances selected.
Because of this, the probabilities are also changed,
as the best solution for the subsample may present
different results for the whole training set. As the
sample constantly changes, different solutions can
be received, improving the search process. In the
case of an evolutionary algorithm being used as a
learning method, during every new adaptation pe-
riod, a population of solutions from the previous
step is saved. Individuals in this population are able
to classify instances of the new training set, but on
most occasions with lower accuracy.

At each generation of the evolutionary algo-
rithm, the best solution found for the subsample is
checked on the whole sample. This step is required
to exclude losing the best found solution. More-
over, the best solution for the whole training set is
included into population together with the best solu-
tion for the subsample. At the end of the adaptation
period, all individuals of the current population are
checked on the whole training sample. This step is
required as the population may contain other solu-
tions which could have even better generalization
than the best solution for the current subsample.

One more important issue during creating a sub-
sample is setting the amount of instances to be se-
lected for every class. If the described procedure

will be used without taking the original class distri-
bution into account, the distribution in the subsam-
ple may significantly differ. Because of this, the
number of instances available for every class has
to influence the subsample creation procedure. The
problem of imbalanced classification with fuzzy
rule bases has been previously studied in [11, 12].

One of the methods for taking this distribution
into consideration is a stratified approach, which is
commonly used in cross-validation. This approach
is important for balanced problems, as it saves the
class distribution.

However in the case of solving imbalanced clas-
sification problems, the stratified approach may be
not the best way. As the described adaptive instance
selection approach may choose different groups of
instances, for imbalanced problems it is possible to
sample more balanced subsets, than the original set.
This idea is implemented in the balancing approach,
which creates the subset so that the number of in-
stances would be as balanced as possible. In this
case, the minority classes may be entirely included
into the training set.

Figure 2. Example of instance selection

In Figure 2, we show a graphical example of
which of the instances are chosen by the algorithm
and how the active instance selection procedure
leads to an improvement in the classification qual-
ity. The example is a two-class problem with 31
measurements, with different class instances shown
with crosses and squares. On the left side, the start
of the algorithm is shown, where all instances have
the same probability of being selected, shown by
the size of the points. The measurements in circles

.

178 Vladimir Stanovov, Eugene Semenkin, Olga Semenkina

are the instances that have been selected into the
current subsample. The separating surface obtained
by the end of the adaptation period does not classify
all patterns correctly: instances 16 and 18, which
are in the subsample, are misclassified. On the right
side, the next adaptation period is shown. Instances
16 and 18 did not change their size (i.e. U16 = U18 =
1) compared to unused instances, while all the rest
(1, 3, 7, 12, 14, 19, 20, 28, 29), used and correctly
classified, received a lower probability and thus a
smaller size.

The lower graph in Figure 2 demonstrates the
situation after several adaptation periods, where
those instances that are close to the separating plane
between classes have higher probabilities of being
chosen (and they are actually chosen at this itera-
tion), while the remaining instances that lie further
away have lower probablilties.

4 Experimental setup and results

We performed a set of computational experi-
ments with the presented adaptive instance se-
lection algorithm and hybrid fuzzy GMBL algo-
rithm to evaluate their effectiveness. The exper-
iments were performed on a 4-core Intel Core-i7
2600K@4400MHz processor, the program system
was implemented in C++ with GCC 4.8.1 compiler,
only standard C++ libraries used.

The parameters of the hybrid evolutionary
fuzzy classification algorithm were set in the same
way for all experiments: the population size was
equal to 100, the number of generations to 10000
and the maximum number of rules to 40. The pa-
rameters for the instance selection, i.e. the size of
the subsample and the length of the adaptation pe-
riod varied. The subsample size was set to 5%,
10%, 15%, 20%, 25% and 30% of the original train-
ing set, the length of the adaptation period was set
to 50, 100, 200 and 400 generations. Also two sam-
pling strategies were tested – a stratified and a bal-
ancing strategy for the subsample. For each combi-
nation of parameters a 10-fold cross-validation pro-
cedure was performed twice, so that the classifica-
tion quality measures were averaged over 20 runs.
The standard algorithm without instance selection
has also been tested.

The classification problems for testing were
taken from the UCI [13] and KEEL [14] reposito-
ries. The selected problems have a large number of
instances, variables and classes, some of which are
highly imbalanced. The parameters of the datasets
are presented in Table 1.

Table 1. Datasets used

Dataset Number Number Number
of of of classes
instances features

Magic 19020 10 2
Page-
blocks

5472 10 5

Penbased 10992 16 10
Phoneme 5404 5 2
Ring 7400 20 2
Satimage 6435 36 6
Segment 2310 19 7
Texture 5500 40 11
Twonorm 7400 20 2

The error values in Table 2 are the error rates in
percentages. The next table contains the best results
with instance selection and the stratified strategy.

The best instance selection configurations for
the stratified strategy were the following, for Magic:
30% of the training sample and adaptation period
length of 400 generations; for Page-blocks: 30%,
200; for Penbased: 15%, 50; Phoneme: 25%, 200;
Ring: 25%, 50; Satimage: 30%, 50; Segment: 30%,
50; Texture: 25%, 50; Twonorm: 30%, 100. So, for
most of the problems the best results were obtained
with the maximum subsample size.

The difference between the standard method and in-
stance selection with the stratified strategy is pre-
sented in Table 4.

The time ratio was calculated as a ratio of the
modified algorithm to the standard algorithm in per-
centages. The maximum difference in accuracy was
3.59% (Penbased problem). Only for the Phoneme
problem was the effect of instance selection nega-
tive (i.e. 1.26% lower for the training sample). The
time spent by the modified algorithm was from 18%
to 32% of the original, depending mainly on the size
of the subsample. Results for the balancing strategy
are presented in Table 5.

Table 6 contains the comparison of Tables 2 and 5.

179Vladimir Stanovov, Eugene Semenkin, Olga Semenkina

are the instances that have been selected into the
current subsample. The separating surface obtained
by the end of the adaptation period does not classify
all patterns correctly: instances 16 and 18, which
are in the subsample, are misclassified. On the right
side, the next adaptation period is shown. Instances
16 and 18 did not change their size (i.e. U16 = U18 =
1) compared to unused instances, while all the rest
(1, 3, 7, 12, 14, 19, 20, 28, 29), used and correctly
classified, received a lower probability and thus a
smaller size.

The lower graph in Figure 2 demonstrates the
situation after several adaptation periods, where
those instances that are close to the separating plane
between classes have higher probabilities of being
chosen (and they are actually chosen at this itera-
tion), while the remaining instances that lie further
away have lower probablilties.

4 Experimental setup and results

We performed a set of computational experi-
ments with the presented adaptive instance se-
lection algorithm and hybrid fuzzy GMBL algo-
rithm to evaluate their effectiveness. The exper-
iments were performed on a 4-core Intel Core-i7
2600K@4400MHz processor, the program system
was implemented in C++ with GCC 4.8.1 compiler,
only standard C++ libraries used.

The parameters of the hybrid evolutionary
fuzzy classification algorithm were set in the same
way for all experiments: the population size was
equal to 100, the number of generations to 10000
and the maximum number of rules to 40. The pa-
rameters for the instance selection, i.e. the size of
the subsample and the length of the adaptation pe-
riod varied. The subsample size was set to 5%,
10%, 15%, 20%, 25% and 30% of the original train-
ing set, the length of the adaptation period was set
to 50, 100, 200 and 400 generations. Also two sam-
pling strategies were tested – a stratified and a bal-
ancing strategy for the subsample. For each combi-
nation of parameters a 10-fold cross-validation pro-
cedure was performed twice, so that the classifica-
tion quality measures were averaged over 20 runs.
The standard algorithm without instance selection
has also been tested.

The classification problems for testing were
taken from the UCI [13] and KEEL [14] reposito-
ries. The selected problems have a large number of
instances, variables and classes, some of which are
highly imbalanced. The parameters of the datasets
are presented in Table 1.

Table 1. Datasets used

Dataset Number Number Number
of of of classes
instances features

Magic 19020 10 2
Page-
blocks

5472 10 5

Penbased 10992 16 10
Phoneme 5404 5 2
Ring 7400 20 2
Satimage 6435 36 6
Segment 2310 19 7
Texture 5500 40 11
Twonorm 7400 20 2

The error values in Table 2 are the error rates in
percentages. The next table contains the best results
with instance selection and the stratified strategy.

The best instance selection configurations for
the stratified strategy were the following, for Magic:
30% of the training sample and adaptation period
length of 400 generations; for Page-blocks: 30%,
200; for Penbased: 15%, 50; Phoneme: 25%, 200;
Ring: 25%, 50; Satimage: 30%, 50; Segment: 30%,
50; Texture: 25%, 50; Twonorm: 30%, 100. So, for
most of the problems the best results were obtained
with the maximum subsample size.

The difference between the standard method and in-
stance selection with the stratified strategy is pre-
sented in Table 4.

The time ratio was calculated as a ratio of the
modified algorithm to the standard algorithm in per-
centages. The maximum difference in accuracy was
3.59% (Penbased problem). Only for the Phoneme
problem was the effect of instance selection nega-
tive (i.e. 1.26% lower for the training sample). The
time spent by the modified algorithm was from 18%
to 32% of the original, depending mainly on the size
of the subsample. Results for the balancing strategy
are presented in Table 5.

Table 6 contains the comparison of Tables 2 and 5.

SELF-CONFIGURING HYBRID EVOLUTIONARY ALGORITHM FOR . . .

Table 2. Results for the standard algorithm

Dataset Training error Test error Number of rules Rule length Time(minutes)
Magic 15.06 15.73 12.6 3.82 370.62

Page-blocks 3.52 3.96 10.1 3.49 94.48
Penbased 7.06 7.46 30.5 6.23 385.2
Phoneme 15.03 16.48 18.3 3.01 84.95

Ring 4.64 5.82 26.6 3.83 226.70
Satimage 12.22 14.22 20.4 11.06 345.82
Segment 4.55 6.45 22.2 6.69 146.18
Texture 6.50 7.75 25.8 14.90 352.26

Twonorm 4.42 6.06 17.4 7.40 254.88

Table 3. Results for instance selection with the stratified strategy

Dataset Training error Test error Number of rules Rule length Time(minutes)
Magic 14.98 15.23 10.7 4.77 121.19

Page-blocks 3.59 3.83 7.8 4.94 20.73
Penbased 3.18 3.87 31.3 6.42 65.36
Phoneme 16.29 16.77 12.5 3.15 15.45

Ring 3.38 4.86 30.0 4.12 54.08
Satimage 11.28 13.05 27.9 6.72 96.31
Segment 3.01 5.13 25.1 6.32 39.21
Texture 3.34 4.31 28.1 11.76 97.47

Twonorm 3.07 4.66 18.7 7.45 58.92

Table 4. Difference between Table 2 and Table 3, positive is better

Dataset Training error Test error Number of rules Rule length Time ratio, %
Magic 0.08 0.5 1.9 -0.95 32.70

Page-blocks -0.07 0.13 2.3 -1.45 21.94
Penbased 3.88 3.59 -0.8 -0.19 16.97
Phoneme -1.26 -0.29 5.8 -0.14 18.19

Ring 1.26 0.96 -3.4 -0.29 23.86
Satimage 0.94 1.17 -7.45 4.34 27.85
Segment 1.54 1.32 -2.9 0.37 26.82
Texture 3.16 3.44 -2.3 3.14 27.67

Twonorm 1.35 1.4 -1.3 -0.05 23.12

180 Vladimir Stanovov, Eugene Semenkin, Olga Semenkina

Table 5. Results for instance selection with the balancing strategy

Dataset Training error Test error Number of rules Rule length Time(minutes)
Magic 14.62 15.08 17.3 3.63 129.65

Page-blocks 2.71 3.25 18.9 4.82 18.53
Penbased 3.27 3.81 30.8 6.11 91.42
Phoneme 15.63 16.88 24.0 2.84 19.62

Ring 3.23 5.08 30.2 3.85 68.23
Satimage 10.57 12.93 27.2 5.84 85.12
Segment 3.55 5.19 25.1 6.24 32.40
Texture 3.37 4.45 27.0 12.81 114.79

Twonorm 4.03 4.81 15.0 7.74 38.11

Table 6. Difference between Table 2 and Table 5, positive is better

Dataset Training error Test error Number of rules Rule length Time(minutes)
Magic 0.44 0.65 -4.7 0.19 34.98

Page-blocks 0.81 0.71 -8.8 -1.33 19.61
Penbased 3.79 3.65 -0.3 0.12 23.73
Phoneme -0.60 -0.40 -5.75 0.17 23.10

Ring 1.41 0.74 -3.6 -0.02 30.10
Satimage 1.65 1.29 -6.8 5.22 24.61
Segment 1.00 1.26 -2.9 0.45 22.16
Texture 3.13 3.30 -1.2 2.09 32.59

Twonorm 0.39 1.25 2.4 -0.34 14.95

Applying the balancing strategy changed the be-
haviour of the algorithm for most of the datasets.
For the Phoneme dataset the difference changed
from -1.29% to -0.4%. The best improvement was
for the Penbased problem, 3.65%. Although the av-
erage number of rules increased for 8 datasets out of
9, the average rule length decreased for 6 datasets
out of 9, which means that the algorithm has de-
signed more rules, but they are less complex.

The best configurations for the balancing strat-
egy were: Magic: 30%, 200; Page-blocks: 20%,
50; Penbased: 25%, 100; Phoneme: 30%, 50; Ring:
30%, 50; Satimage: 30%, 50; Segment: 25%, 50;
Texture: 30%, 50; Twonorm: 20%, 200.

However, the effect of the balanced strategy was
mainly demonstrated not in terms of overall accu-
racy, but in terms of a more balanced classification.
To compare how successfully the algorithm recog-
nizes both minority and majority classes, we used
the RecallM measure from [15]. Table 7 contains
the comparison of (1- RecallM)*100 values for the
original algorithm, stratified strategy and balanced
strategy.

The presented results prove that using the bal-
anced strategy not only increases the overall classi-
fication accuracy, but also allows different classes
to be recognized more precisely. However, be-
cause for most cases the best results were obtained
when using 30% of the sample, applying the balanc-
ing strategy to the Page-blocks problem, for exam-
ple, still resulted in a highly imbalanced subsample.
Nevertheless, the improvement for this problem is
about 13% compared with original algorithm.

In Tables 8 and 9 we provide the (1-
RecallM)*100 values and accuracy values for the
Page-blocks problem for all subsample sizes and all
adaptation period lengths.

The lowest (1- RecallM)*100 value was ob-
tained when the size of the subsample was min-
imal, i.e. when the subsample is as balanced as
possible. We should mention that even for 5% for
the Page-blocks datasets it was impossible to cre-
ate a completely balanced subsample, as the mi-
nority class contains only 28 measurements, while
all the other classes in this case contained 54 mea-
surements. The bias towards the majority classes

181Vladimir Stanovov, Eugene Semenkin, Olga Semenkina

Table 5. Results for instance selection with the balancing strategy

Dataset Training error Test error Number of rules Rule length Time(minutes)
Magic 14.62 15.08 17.3 3.63 129.65

Page-blocks 2.71 3.25 18.9 4.82 18.53
Penbased 3.27 3.81 30.8 6.11 91.42
Phoneme 15.63 16.88 24.0 2.84 19.62

Ring 3.23 5.08 30.2 3.85 68.23
Satimage 10.57 12.93 27.2 5.84 85.12
Segment 3.55 5.19 25.1 6.24 32.40
Texture 3.37 4.45 27.0 12.81 114.79

Twonorm 4.03 4.81 15.0 7.74 38.11

Table 6. Difference between Table 2 and Table 5, positive is better

Dataset Training error Test error Number of rules Rule length Time(minutes)
Magic 0.44 0.65 -4.7 0.19 34.98

Page-blocks 0.81 0.71 -8.8 -1.33 19.61
Penbased 3.79 3.65 -0.3 0.12 23.73
Phoneme -0.60 -0.40 -5.75 0.17 23.10

Ring 1.41 0.74 -3.6 -0.02 30.10
Satimage 1.65 1.29 -6.8 5.22 24.61
Segment 1.00 1.26 -2.9 0.45 22.16
Texture 3.13 3.30 -1.2 2.09 32.59

Twonorm 0.39 1.25 2.4 -0.34 14.95

Applying the balancing strategy changed the be-
haviour of the algorithm for most of the datasets.
For the Phoneme dataset the difference changed
from -1.29% to -0.4%. The best improvement was
for the Penbased problem, 3.65%. Although the av-
erage number of rules increased for 8 datasets out of
9, the average rule length decreased for 6 datasets
out of 9, which means that the algorithm has de-
signed more rules, but they are less complex.

The best configurations for the balancing strat-
egy were: Magic: 30%, 200; Page-blocks: 20%,
50; Penbased: 25%, 100; Phoneme: 30%, 50; Ring:
30%, 50; Satimage: 30%, 50; Segment: 25%, 50;
Texture: 30%, 50; Twonorm: 20%, 200.

However, the effect of the balanced strategy was
mainly demonstrated not in terms of overall accu-
racy, but in terms of a more balanced classification.
To compare how successfully the algorithm recog-
nizes both minority and majority classes, we used
the RecallM measure from [15]. Table 7 contains
the comparison of (1- RecallM)*100 values for the
original algorithm, stratified strategy and balanced
strategy.

The presented results prove that using the bal-
anced strategy not only increases the overall classi-
fication accuracy, but also allows different classes
to be recognized more precisely. However, be-
cause for most cases the best results were obtained
when using 30% of the sample, applying the balanc-
ing strategy to the Page-blocks problem, for exam-
ple, still resulted in a highly imbalanced subsample.
Nevertheless, the improvement for this problem is
about 13% compared with original algorithm.

In Tables 8 and 9 we provide the (1-
RecallM)*100 values and accuracy values for the
Page-blocks problem for all subsample sizes and all
adaptation period lengths.

The lowest (1- RecallM)*100 value was ob-
tained when the size of the subsample was min-
imal, i.e. when the subsample is as balanced as
possible. We should mention that even for 5% for
the Page-blocks datasets it was impossible to cre-
ate a completely balanced subsample, as the mi-
nority class contains only 28 measurements, while
all the other classes in this case contained 54 mea-
surements. The bias towards the majority classes

SELF-CONFIGURING HYBRID EVOLUTIONARY ALGORITHM FOR . . .

Table 7. Comparison of (1- RecallM)*100 values

Dataset Train.
Origin.

Test.
Origin.

Train.
Stratif.

Test.
Stratif.

Train.
Balanc.

Test.
Balanc.

Magic 18.74 19.47 18.83 19.12 17.45 17.99
Page-
blocks

34.85 36.80 36.43 38.52 19.64 23.05

Penbased 7.04 7.44 3.16 3.84 3.25 3.80
Phoneme 18.98 20.80 21.48 22.38 16.60 18.10
Ring 4.64 5.82 3.38 4.87 3.23 5.09
Satimage 15.78 17.98 15.85 17.73 13.63 15.28
Segment 4.55 6.45 3.01 5.13 3.55 5.19
Texture 6.50 7.75 3.34 4.31 3.37 4.45
Twonorm 4.42 6.06 3.07 4.66 4.03 4.81

has been almost eliminated thanks to the balancing
strategy, as the accuracy value was equal to 7.95.

For comparison, we provide the accuracy values for
the Page-blocks problem.

Table 8. (1- RecallM)*100 values for Page-blocks

Adaptation
period
length

50 100 200 400

5% 10.18 12.92 15.18 12.06
10% 12.92 13.71 14.59 17.51
15% 20.51 19.63 18.35 19.26
20% 23.05 21.23 22.72 22.36
25% 28.35 26.14 23.05 22.24
30% 28.04 27.73 28.42 29.51

Table 9. Accuracy values for Page-blocks

Adaptation
period
length

50 100 200 400

5% 7.95 8.44 9.25 8.48
10% 5.81 6.03 6.67 7.27
15% 4.00 4.50 4.90 5.77
20% 3.25 3.40 3.93 4.40
25% 3.78 3.78 3.69 4.15
30% 3.38 3.69 3.78 4.06

For 5% of the training set in the subset the accu-
racy decreases by a factor of 2 compared to values
obtained when using 30% of the sample. However,
the classifiers obtained with 5% of the sample can
be more suitable, as they are capable to successfully
classify all classes with the same accuracy.

In Tables 10 and 11 we also provide the confusion

matrixes for the Page-blocks problem to show the
effect of the balancing strategy.

In every row of tables 10 and 11 the predicted
class having the largest number of instances clas-
sified was marked in bold. The original algorithm
correctly classifies the first, majority class, but the
other classes are also classified into the first class,
except the second one. This means that actually the
algorithm correctly classifies only the first and sec-
ond classes. When using the balancing strategy, the
situation changes, and most of the instances are cor-
rectly classified in their class, however, this leads to
a lower general classification quality.

For the remaining problems similar results were
obtained. The main trend is that more balanced
classifiers can be trained with a smaller size of the
sample. If the sample becomes balanced at some
particular percentage, there is no sense in decreas-
ing its size any more.

In Figures 3-10 we show the surface plot as a graph-
ical representation of the dependence of accuracy
on the size of the subsample and the length of the
adaptation period.

Figure 3. Segment

182 Vladimir Stanovov, Eugene Semenkin, Olga Semenkina

Table 10. Confusion matrix for the Page-blocks problem, original algorithm

Class Pred. 1 Pred. 2 Pred. 3 Pred. 4 Pred. 5 Unknown
True 1 487.1 2.90 0 0.36 0.90 0
True 2 3.09 29.0 0.18 0.18 0.45 0
True 3 1.72 0 1.09 0 0 0
True 4 2.45 0.09 0 6 0.18 0
True 5 8.73 0 0.27 0 2.54 0

Table 11. Confusion matrix for the Page-blocks problem, balanced strategy

Class Pred. 1 Pred. 2 Pred. 3 Pred. 4 Pred. 5 Unknown
True 1 452.0 19.36 3.72 6.54 9.64 0.09
True 2 1.72 30.27 0.09 0.36 0.36 0.09
True 3 0.18 0 2.54 0.09 0 0
True 4 0 0.27 0 8.27 0.18 0
True 5 1.27 0.36 0.18 0.36 9.36 0

Figure 4. Phoneme

Figure 5. Page-blocks

Figure 6. Satimage

Figure 7. Twonorm

183Vladimir Stanovov, Eugene Semenkin, Olga Semenkina

Table 10. Confusion matrix for the Page-blocks problem, original algorithm

Class Pred. 1 Pred. 2 Pred. 3 Pred. 4 Pred. 5 Unknown
True 1 487.1 2.90 0 0.36 0.90 0
True 2 3.09 29.0 0.18 0.18 0.45 0
True 3 1.72 0 1.09 0 0 0
True 4 2.45 0.09 0 6 0.18 0
True 5 8.73 0 0.27 0 2.54 0

Table 11. Confusion matrix for the Page-blocks problem, balanced strategy

Class Pred. 1 Pred. 2 Pred. 3 Pred. 4 Pred. 5 Unknown
True 1 452.0 19.36 3.72 6.54 9.64 0.09
True 2 1.72 30.27 0.09 0.36 0.36 0.09
True 3 0.18 0 2.54 0.09 0 0
True 4 0 0.27 0 8.27 0.18 0
True 5 1.27 0.36 0.18 0.36 9.36 0

Figure 4. Phoneme

Figure 5. Page-blocks

Figure 6. Satimage

Figure 7. Twonorm

SELF-CONFIGURING HYBRID EVOLUTIONARY ALGORITHM FOR . . .

Figure 8. Ring

Figure 9. Penbased

Figure 10. Magic

Figure 11. Texture

In most of the cases the increasing of the sub-
sample size leads to better classification accuracy.

The dependence on the adaptation period length
is not so straightforward; however for most of
the problems shorter adaptation periods are more
preferable. This happens because for most of the
problems the population is capable of adjusting to
the new subsample within 50 generations. More-
over, a shorter adaptation period gives the possibil-
ity to update the Ui values more often and better dis-
tinguish the problematic areas of the feature space.

To compare the time required for computation by
the original algorithm and the instance selection
method, the computation time was averaged over
all adaptation period lengths for every subsample
size. The resulting time values were compared to
the ones for the original algorithm. Next, the accel-
eration rate equal to Torig/TIS was calculated. Table
12 contains the acceleration values.

The maximal acceleration value achieved is
equal to 21.5, and the minimal to 3.09. For most
of the problems the algorithm with adaptive in-
stance selection had results not worse than the orig-
inal method already at the point of 10-15% of the
training sample being used, which means that at
the same level of classification quality the instance
selection allows the algorithm to work 6-12 times
faster.

For better understanding of the training process
with instance selection, we provide an error graph
for the best individual for the overall sample and
the subsample. In Figure 11 the graph for the Pen-
based problem with an adaptation period of 50 and
subsample size of 15% is presented. In Figure 12
the graph for the Penbased problem with an adapta-
tion period of 400 generations and subsample size
of 15% is presented.

One of the characteristics of the proposed adap-
tive instance selection algorithm is that the subsam-
ple error rate appears to be larger than the over-
all training error. Nevertheless, this does not pre-
vent a successful training process. The reason for
such behaviour is that the instance selection fo-
cuses on instances which are difficult to classify
(most of the time they are instances on the border
between classes) and includes them into the train-
ing subset. In the first adaptation periods, the sub-
sample error and the overall error are very similar,
which means that the measurements are selected al-
most uniformly. But later the situation changes, be-
cause instances which are easy to classify get larger

184 Vladimir Stanovov, Eugene Semenkin, Olga Semenkina

Table 12. Time acceleration values

Dataset 5 10 15 20 25 30 Orig
Magic 13.51 9.11 6.15 4.83 3.47 3.09 1

Page-blocks 13.51 8.90 6.70 5.41 4.41 3.60 1
Penbased 14.04 9.47 6.39 5.02 3.61 3.20 1
Phoneme 21.50 11.39 8.72 6.05 4.96 4.16 1

Ring 16.13 10.47 6.83 5.57 4.22 3.46 1
Satimage 17.25 11.62 8.10 5.73 4.34 3.50 1
Segment 19.65 10.65 7.37 5.56 4.42 3.72 1
Texture 17.70 11.09 7.15 4.82 3.76 3.15 1

Twonorm 18.54 12.41 8.86 6.72 5.13 4.39 1

counter values and lower probabilities to be chosen.
As these instances are still present in the training
sample and classified correctly, the overall training
error becomes lower than the subsample error.

When increasing the adaptation period length,
the training process becomes slower. In Figure 12
it is seen that at the first adaptation period the train-
ing subsample error becomes lower than the overall
training set error. This happens because the popu-
lation overfits to the subsample, i.e. the best rule
base for the subsample describes the trends which
are presented only in the subsample. During the
several next adaptation periods the error on the sub-
sample and training set is almost identical, but then
the probabilities are changed so that the algorithm
focuses on problematic areas of the search space,
which leads to a larger subsample error. In the
case of a longer adaptation period, the difference
between the training set and subset errors is smaller
than for the shorter adaptation period.

Figure 12. Accuracy change during the training
process, Penbased problem, 50 generations

Figure 13. Accuracy change during the training
process, Penbased problem, 400 generations

Let us consider the training process in the sense
of different classification quality measures. The
Page-blocks problem will be considered, as it is the
most imbalanced problem. To calculate the quality
measures such as Accuracy (overall classification
accuracy), Precisionµ, Recall, Fscore, PrecisionM,
RecallM, FscoreM taken from [15], the confusion
matrix was calculated for every generation. In Fig-
ure 13 we provide the averaged graphs for all mea-
sures averaged over all algorithm runs.

185Vladimir Stanovov, Eugene Semenkin, Olga Semenkina

Table 12. Time acceleration values

Dataset 5 10 15 20 25 30 Orig
Magic 13.51 9.11 6.15 4.83 3.47 3.09 1

Page-blocks 13.51 8.90 6.70 5.41 4.41 3.60 1
Penbased 14.04 9.47 6.39 5.02 3.61 3.20 1
Phoneme 21.50 11.39 8.72 6.05 4.96 4.16 1

Ring 16.13 10.47 6.83 5.57 4.22 3.46 1
Satimage 17.25 11.62 8.10 5.73 4.34 3.50 1
Segment 19.65 10.65 7.37 5.56 4.42 3.72 1
Texture 17.70 11.09 7.15 4.82 3.76 3.15 1

Twonorm 18.54 12.41 8.86 6.72 5.13 4.39 1

counter values and lower probabilities to be chosen.
As these instances are still present in the training
sample and classified correctly, the overall training
error becomes lower than the subsample error.

When increasing the adaptation period length,
the training process becomes slower. In Figure 12
it is seen that at the first adaptation period the train-
ing subsample error becomes lower than the overall
training set error. This happens because the popu-
lation overfits to the subsample, i.e. the best rule
base for the subsample describes the trends which
are presented only in the subsample. During the
several next adaptation periods the error on the sub-
sample and training set is almost identical, but then
the probabilities are changed so that the algorithm
focuses on problematic areas of the search space,
which leads to a larger subsample error. In the
case of a longer adaptation period, the difference
between the training set and subset errors is smaller
than for the shorter adaptation period.

Figure 12. Accuracy change during the training
process, Penbased problem, 50 generations

Figure 13. Accuracy change during the training
process, Penbased problem, 400 generations

Let us consider the training process in the sense
of different classification quality measures. The
Page-blocks problem will be considered, as it is the
most imbalanced problem. To calculate the quality
measures such as Accuracy (overall classification
accuracy), Precisionµ, Recall, Fscore, PrecisionM,
RecallM, FscoreM taken from [15], the confusion
matrix was calculated for every generation. In Fig-
ure 13 we provide the averaged graphs for all mea-
sures averaged over all algorithm runs.

SELF-CONFIGURING HYBRID EVOLUTIONARY ALGORITHM FOR . . .

Figure 14. The change in classification quality,
Page-blocks problem, original algorithm

For this problem the Precisionµ, Recall and Fscore
measures are almost identical, but PrecisionM ,
RecallM , FscoreM are different. This happens due to
the fact that the last measures are macro-measures
and are calculated for each class separately and then
averaged. In the case of imbalanced classification,
the PrecisionM becomes larger than Accuracy, but
RecallM becomes smaller. The errors for each of
the five classes are presented in Figure 14.

Figure 15. Classification errors for five classes,
Page-blocks problem, original algorithm

Only the first, most represented class can be recog-
nized correctly by the original algorithm – the error
values for the remaining classes are high or very
high. The next two Figures, 15 and 16, show the
change in classification quality measures and clas-
sification errors for the instance selection algorithm
with the balancing strategy, with the following pa-
rameters: 5% of the training sample in the subsam-
ple and an adaptation period of 50 generations.

Figure 16. The change in classification quality,
Page-blocks problem, balanced instance selection

Figure 17. Classification errors for five classes,
Page-blocks problem, balanced instance selection

Compared to the previous case, the solutions
are now more balanced, which is especially notice-
able in Figure 16. Here all classes have error rates
of about 0.1 except for the fifth class, which has
0.2. Also, the FscoreM values are larger than for the
original algorithm. The presented results prove that
the instance selection method allows the classifica-
tion quality to be increased when using the balanced
strategy for imbalanced datasets.

For comparison with other methods, an addi-
tional computation experiment was performed on
the same set of problems. The algorithm was
tested without instance selection, but with larger re-
sources, i.e. the population size was 210, the num-
ber of generations was 50000, and the number of
rules did not change and was equal to 40. Several
classification algorithms were chosen for compari-
son from [16, 17]. Among them there was also the
prototype algorithm developed by the H. Ishibuchi

186 Vladimir Stanovov, Eugene Semenkin, Olga Semenkina

Table 13. Comparison with other approaches

Dataset HEFCA
IS

HEFCA
Orig.

HEFCA
Res.

Fuzzy
GBML
[4]

Paral.
Fuzzy
GBML

FARC-
HD
[16]

Bio HEL
[17]

Magic 15.08 15.73 15.87 15.42 14.89 15.49 -
Page-
blocks

3.25 3.96 3.78 3.81 3.62 4.99 -

Penbased 3.81 7.46 5.02 3.07 3.30 3.96 6.00
Phoneme 16.88 16.48 15.36 15.43 15.96 17.86 -
Ring 5.08 5.82 5.52 6.73 5.25 5.92 -
Satimage 12.93 14.22 12.86 15.54 12.96 12.68 11.60
Segment 5.19 6.45 5.62 5.99 5.90 - 2.90
Texture 4.45 7.75 4.90 4.64 4.77 7.11 -
Twonorm 4.81 6.06 5.57 7.36 3.39 4.72 -

group, and also their parallel implementation with
the training subsample rotation.

The presented approach with the balancing
strategy, noted as HEFCA IS (Hybrid Evolution-
ary Fuzzy Classification Algorithm with Instance
Selection) appeared to be the best in the sense of
accuracy for 3 problems out of 9. Moreover, this al-
gorithm has overcome not only the original method
(HEFCA Orig.) on 8 problems out of 9, but also the
method with 10.5 times larger resource (HEFCA
Res.) on 7 problems. The prototype algorithm and
its parallel implementation were outperformed on 4
problems out of 9. On the Satimage problem the re-
sults are almost identical. The parallel implementa-
tion with subsamples rotation used 10.5 times more
computational resource and 7 threads.

Table 14 contains the comparison of the time
required for training by the algorithm with instance
selection and the Parallel fuzzy GBML [4].

Table 14. Training time comparison

Dataset HEFCA
IS

Parallel
fuzzy
GBML

Ratio

Magic 129.65
min.

22.58
min.

5.74

Page-
blocks

18.53
min.

4.74 min. 3.91

Penbased 91.42
min.

35.56
min.

2.57

Phoneme 19.62
min.

13.19
min.

1.49

Ring 68.23
min.

22.52
min.

3.03

Satimage 85.12
min.

15.38
min.

5.53

Segment 32.40
min.

4.69 min. 6.91

Texture 114.79
min.

15.72
min.

7.30

Twonorm 38.11
min.

7.84 min. 4.86

On average, the presented approach is 4.6 times
slower, but the parallel algorithm used 7 threads for
calculation, allowing it to train up to 7 times faster.
One should mention that the presented time values
for instance selection are for the best configurations,
and for most of the problems the best results were
obtained when using 30% of the training sample.
This means that the time required for training can
be decreased even more without a significant loss
in classification accuracy.

187Vladimir Stanovov, Eugene Semenkin, Olga Semenkina

Table 13. Comparison with other approaches

Dataset HEFCA
IS

HEFCA
Orig.

HEFCA
Res.

Fuzzy
GBML
[4]

Paral.
Fuzzy
GBML

FARC-
HD
[16]

Bio HEL
[17]

Magic 15.08 15.73 15.87 15.42 14.89 15.49 -
Page-
blocks

3.25 3.96 3.78 3.81 3.62 4.99 -

Penbased 3.81 7.46 5.02 3.07 3.30 3.96 6.00
Phoneme 16.88 16.48 15.36 15.43 15.96 17.86 -
Ring 5.08 5.82 5.52 6.73 5.25 5.92 -
Satimage 12.93 14.22 12.86 15.54 12.96 12.68 11.60
Segment 5.19 6.45 5.62 5.99 5.90 - 2.90
Texture 4.45 7.75 4.90 4.64 4.77 7.11 -
Twonorm 4.81 6.06 5.57 7.36 3.39 4.72 -

group, and also their parallel implementation with
the training subsample rotation.

The presented approach with the balancing
strategy, noted as HEFCA IS (Hybrid Evolution-
ary Fuzzy Classification Algorithm with Instance
Selection) appeared to be the best in the sense of
accuracy for 3 problems out of 9. Moreover, this al-
gorithm has overcome not only the original method
(HEFCA Orig.) on 8 problems out of 9, but also the
method with 10.5 times larger resource (HEFCA
Res.) on 7 problems. The prototype algorithm and
its parallel implementation were outperformed on 4
problems out of 9. On the Satimage problem the re-
sults are almost identical. The parallel implementa-
tion with subsamples rotation used 10.5 times more
computational resource and 7 threads.

Table 14 contains the comparison of the time
required for training by the algorithm with instance
selection and the Parallel fuzzy GBML [4].

Table 14. Training time comparison

Dataset HEFCA
IS

Parallel
fuzzy
GBML

Ratio

Magic 129.65
min.

22.58
min.

5.74

Page-
blocks

18.53
min.

4.74 min. 3.91

Penbased 91.42
min.

35.56
min.

2.57

Phoneme 19.62
min.

13.19
min.

1.49

Ring 68.23
min.

22.52
min.

3.03

Satimage 85.12
min.

15.38
min.

5.53

Segment 32.40
min.

4.69 min. 6.91

Texture 114.79
min.

15.72
min.

7.30

Twonorm 38.11
min.

7.84 min. 4.86

On average, the presented approach is 4.6 times
slower, but the parallel algorithm used 7 threads for
calculation, allowing it to train up to 7 times faster.
One should mention that the presented time values
for instance selection are for the best configurations,
and for most of the problems the best results were
obtained when using 30% of the training sample.
This means that the time required for training can
be decreased even more without a significant loss
in classification accuracy.

SELF-CONFIGURING HYBRID EVOLUTIONARY ALGORITHM FOR . . .

5 Conclusion

The proposed adaptive instance selection algo-
rithm for imbalanced datasets creates samples of
a fixed size out of the original training sample to
guide the training process by taking the information
about classification results into consideration. The
goal of this method is to decrease the time required
for computation along while increasing the quality
of classification. The testing results prove that the
proposed method allows a significant improvement
in classification quality, especially for imbalanced
datasets because of the use of the balancing strat-
egy.

The resulting classifiers are capable of rec-
ognizing all classes with similar accuracy values,
which is important for many real-world problems.
The time required for training decreases signifi-
cantly, and can be adjusted by changing the size
of the subsample. The resulting accuracy is at the
same level as the best algorithms for the presented
set of problems, or even better.

The proposed adaptive instance selection
method is universal and can be applied to any other
iteration-based machine learning technique used
for classification, including non-evolutionary algo-
rithms.

References
[1] A. Fernandez, S. Garcia, J. Luengo, E. Bernado-

Mansilla, F. Herrera, Genetics-Based Machine
Learning for Rule Induction: State of the Art,
Taxonomy, and Comparative Study, Evolutionary
Computation, IEEE Transactions on (Volume:14,
Issue: 6), June 21, 2010, pp. 913 – 941.

[2] L. B. Booker, D. E. Goldberg, and J. H. Holland,
Classifier systems and genetic algorithms, Artif.
Intell., vol. 40, no. 1–3, Sep. 1989, pp. 235–282.

[3] Bodenhofer U., Herrera F. Ten Lectures on Ge-
netic Fuzzy Systems, Preprints of the Inter-
national Summer School: Advanced Control—
Fuzzy, Neural, Genetic. – Slovak Technical Uni-
versity, Bratislava., 1997. p. 1–69.

[4] Ishibuchi H., Mihara S., Nojima Y. Parallel Dis-
tributed Hybrid Fuzzy GBML Models With Rule
Set Migration and Training Data Rotation, IEEE
Transactions on fuzzy systems, vol. 21, n. 2., April
2013.

[5] Ishibuchi H., T. Yamamoto, Rule weight specifi-
cation in fuzzy rule-based classification systems,
IEEE Trans. Fuzzy Systems 13, 2005, pp. 428–
435.

[6] E. Semenkin, M. Semenkina, Self-configuring ge-
netic algorithm with modified uniform crossover
operator, in Y. Tan, Y. Shi, Z. Ji (Eds.), Advances
in Swarm Intelligence, PT1, LNCS 7331, 2012, pp.
414-421.

[7] E. Semenkin, M. Semenkina, Self-Configuring Ge-
netic Programming Algorithm with Modified Uni-
form Crossover, in Proc. of the IEEE Congress on
Evolutionary Computation (CEC 2012), Brisane
(Australia), pp. 1-6, 2012.

[8] M. Semenkina, E. Semenkin, Hybrid self-
configuring evolutionary algorithm for automated
design of fuzzy classifier, in Y. Tan, Y. Shi, C.A.C.
Coello (Eds.), Advances in Swarm Intelligence,
PT1, LNCS 8794, 2014, pp. 310-317.

[9] J. R. Cano, F. Herrera, M. Lozano, Stratification for
scaling up evolutionary prototype selection, Pat-
tern Recognition Letters, 2004 Volume 26, Issue
7, 15 May 2005, Pages 953–963.

[10] J. R. Cano, F. Herrera, M. Lozano, A Study on
the Combination of Evolutionary Algorithms and
Stratified Strategies for Training Set Selection in
Data Mining, Advances in Soft Computing Volume
32, 2005, pp 271-284.

[11] A. Fernndez, M. J. Jesus, F. Herrera, Hierarchi-
cal fuzzy rule based classification systems with ge-
netic rule selection for imbalanced data-sets, Inter-
national Journal of Approximate Reasoning, 2009,
pp. 561–577.

[12] A. Fernndez, S. Garca, M. J. Jesusb, F. Herrera,
A study of the behaviour of linguistic fuzzy rule
based classification systems in the framework of
imbalanced data-sets, Fuzzy Sets and Systems 159,
2008, pp. 2378 – 2398.

[13] Asuncion A., Newman D. UCI machine learning
repository, University of California, Irvine, School
of Information and Computer Sciences, 2007.

[14] J. Alcal-Fdez, L. Snchez, S. Garcia, M. J. del Je-
sus, S. Ventura, J. M. Garrell, J. Otero, C. Romero,
J. Bacardit, V. M. Rivas, J. C. Fernndez, and F. Her-
rera, KEEL: A software tool to assess evolutionary
algorithms for data mining problems, Soft Com-
put., vol. 13, no. 3, pp. 307–318, Feb. 2009.

[15] Sokolova M., Lapalme G. A systematic analysis of
performance measures for classification tasks. – In-
formation Processing and Management 45, 2009,
pp. 427–437.

188 Vladimir Stanovov, Eugene Semenkin, Olga Semenkina

[16] J. Alcala-Fdez, R. Alcala, F. Herrera, A fuzzy as-
sociation rulebased classification model for high-
dimensional problems with genetic rule selection
and lateral tuning, IEEE Trans. Fuzzy Syst., vol.
19, no. 5, Oct. 2011, pp. 857–872.

[17] J. Bacardit, E. K. Burke, N. Krasnogor, Improving
the scalability of rule-based evolutionary learning,
Memetic Comput. J., vol. 1, no. 1, Mar. 2009, pp.
55–67.

 Vladimir Stanovov received the
Bachelor of science and Master of sci-
ence degrees in systems analysis and
control from reshetnev siberian state
Aerospace university, Krasnoyarsk,
russia, in 2012 and 2014 respectively.
His research interests include genetic
fuzzy systems, self-configured evo-
lutionary algorithms and machine

learning. He is currently a phd student at the siberian state
Aerospace university. Mr. stanovov received the Best stu-
dent paper Award from the 4th international congress on
Advanced Applied informatics in 2015.

Eugene Semenkin received his Mas-
ter in Applied Mathematics degree
from Kemerovo state university (Ke-
merovo, ussr) in 1982, his phd in
computer science from Leningrad
state university (Leningrad, ussr) in
1989 and his dsc in engineering and
Habilitation from the siberian state
Aerospace university (Krasnoyarsk,

russia) in 1997. since 1997, he has been a professor of sys-
tems analysis at the institute of computer science and tel-
ecommunications of the siberian state Aerospace university.
His areas of research include the modelling and optimization
of complex systems, computational intelligence and data
mining. He has been awarded the tsiolkovsky Badge of Hon-
our by the russian federal space Agency and the reshetnev
medal by the russian federation of cosmonautics.

Olga Semenkina received her Master
in Mathematics degree from Kemero-
vo state university (Kemerovo, ussr)
in 1982, her phd in computer science
from siberian Aerospace Academy
(Krasnoyarsk, russia) in 1995 and her
dsc in engineering from the siberian
state Aerospace university (Krasno-
yarsk, russia) in 2002. since 2003, she

has been a professor of Higher Mathematics of the siberian
state Aerospace university. Her areas of research include the
modelling of complex systems and discrete optimization. she
has been awarded the Badge of Honoured Worker of Higher
education of the russian federation.

