Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Particle filters are very popular - number of algorithms based on Sequential Monte Carlo methods is growing. Paper describes and compares the performance of four of them: Auxiliary Particle Filter - this approach should reduce the high sensitivity to outliers values and poor posterior approximation, Rao-Blackwellised Particle Filter - this approach is recommended for objects with linear and nonlinear state variables, Bootstrap Filter - the first proposed Particle Filter which still can be used, because is very simple to implement, and some variety of SIR algorithm - this algorithm was chosen to show, that importance density also can be constant. The obtained results show that Bootstrap Filter and Rao-Blackwellised approaches give good results, but Bootstrap Filter works 10 times faster. The worst results gives SIR algorithm with unconditional importance function.
Słowa kluczowe
Rocznik
Tom
Strony
345--355
Opis fizyczny
Bibliogr. 19 poz., rys.
Twórcy
autor
- Poznań University of Technology, 60-965 Poznań, ul. Piotrowo 3a
autor
- Poznań University of Technology, 60-965 Poznań, ul. Piotrowo 3a
Bibliografia
- [1] Arulampalam S., Maskell S., Gordon N., Clapp T., A Tutorial on Particle Filters for On-line Non-linear/Non-Gaussian Bayesian Tracking, IEEE Proceedings on Signal Processing, Vol.50, No.2, 2002, pp.174-188.
- [2] Brzozowska-Rup K., Dawidowicz A.L., Metoda filtru cząsteczkowego, Matematyka Stosowana: matematyka dla społeczeństwa 2009, T. 10/51, pp.69-107.
- [3] Candy J.V., Bayesian signal processing, WILEY, New Jersey 2009, pp. 19-44, 237-298.
- [4] Chang C., Ansari R., Khokhar A., Multiple Object Tracking with Kernel Particle Filter, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 2005, Vol. 1, pp. 566-573.
- [5] Douc R., Cappe O., Moulines E., Comparison of Resampling Schemes for Particle Filtering, Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, September 2005, pp. 64-69.
- [6] Doucet A., Freitas N., Murphy K., Russell S., Rao-Blackwellised particle filtering for dynamic Bayesian networks, Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, pp. 176-183.
- [7] Doucet A., Godsill S., Andrieu C., On sequential Monte Carlo sampling methods for Bayesian filtering, Statistics and Computing, 10, 2000, pp. 197-208.
- [8] Doucet A., Johansen A.M., A Tutorial on Particle Filtering and Smoothing: Fifteen years later, handbook of Nonlinear Filtering 2009/12, pp. 656-704.
- [9] Gordon N.J., Salmond N.J., Smith A.F.M., Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings-F, Vol.140, No.2, 1993, pp. 107-113.
- [10] Handeby G., Karlsson R., Gustafsson F., The Rao-Blackwellized Particle Filter: A Filter Bank Implementation, EURASIP Journal on Advances in Signal Processing, Volume 2010, Article ID 724087, pp. 10.
- [11] Kozierski P., Lis M., Auxiliary and Rao-Blackwellised particle filters comparison, Poznan University of Technology Academic Journals. Electrical Engineering, Issue 76, 2013, pp. 79-88.
- [12] Kozierski P., Lis M., Filtr cząsteczkowy w problemie śledzenia - wprowadzenie, Studia z Automatyki i Informatyki, Volume 37, 2012, pp. 79-94.
- [13] Liu J.S., Chen R., Sequential Monte Carlo Methods for Dynamic Systems, Journal of the American Statistical Association, September 1998, Vol. 93, No. 443, pp. 1032-1044.
- [14] Mountney J., Obeid I., Silage D., Modular Particle Filtering FPGA Hardware Architecture for Brain Machine Interfaces, Conf Proc IEEE Eng Med Biol Soc. 2011, pp. 4617-4620.
- [15] Pitt M., Shephard N., Filtering via simulation: auxiliary particle filters, Journal of the American Statistical association, Vol.94, No.446, pp. 590-599.
- [16] Schön T.B., Wills A., Ninness B., System identification of nonlinear state-space models, Automatica 47 (2011), pp. 39-49.
- [17] Sutharsan S., Kirubarajan T., Lang T., McDonald M., An Optimization-Based Parallel Particle Filter for Multitarget Tracking, IEEE Transactions on Aerospace and Electronic Systems, Vol.48, No.2, 4/2012, pp. 1601-1618.
- [18] Thrun S., Particle Filters in Robotics, Proceedings of the 17th Annual Conference on Uncertainty in AI (UAI), 2002.
- [19] Woo J., Kim Y-J., Lee J., Lim M-T., Localization of Mobile Robot using Particle Filter, SICE-ICASE International Joint Conference 2006, pp. 3031-3034.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63995a1c-b1b6-4003-bdb4-dc724a65ace7