Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Preparation and characterisation of aqueous suspensions of silicon carbide for use in the manufacturing of products by the slip casting method
Języki publikacji
Abstrakty
W pracy przedstawiono wyniki badań właściwości zawiesin o 30% udziale objętościowym fazy stałej, którą stanowiły proszki: SiC, Al2O3 i Y2O3 w funkcji dodatku upłynniaczy, tj. TMAH i NaOH w ilości od 0,0 do 1,0% mas. w przeliczeniu na masę fazy stałej. Na podstawie wyznaczonych krzywych lepkości i szybkości sedymentacji stwierdzono, że optymalna ilość upłynniaczy wynosi 0,4–0,6% mas. Wówczas zawiesiny wykazują pH z zakresu 10–11, a wartość potencjału dzeta cząstek gwarantuje ich stabilizację. Uzyskane wyniki badań dały podstawy do zaproponowania elektrostatycznego mechanizmu stabilizacji zawiesin przez oba upłynniacze. Do zawiesin wprowadzono dodatki tlenkowe i spoiwo, a następnie uformowano z nich wyroby (tygle) techniką odlewania. Celem wprowadzenia dodatków tlenkowych było aktywowanie spiekania węglika krzemu. Aktywatorami spiekania była mieszanina tlenków glinu i itru w stosunku masowym 3:2 i w ilości 10% mas. Jako dodatek ułatwiający formowanie zastosowano spoiwo akrylowe w ilości 0,5, 2, 5 i 10% mas. w odniesieniu do masy proszku SiC. Wyroby spiekano w temperaturze 2050 i 2150°C. Wytworzono w ten sposób materiały SiC o wysokiej gęstości i jednorodnej mikrostrukturze.
The paper presents the results of investigations on the properties of suspensions with 30% volume fraction of solid phase which consisted of SiC, Al2O3 and Y2O3 powders as a function of dispersing agents i.e. TMAH and NaOH additive in the amount from 0.0 to 1.0 wt. % calculated on the basis of the solid phase mass. Based on the determined viscosity curves and sedimentation rate measurements, the optimum amount of dispersing agents was found to be 0.4–0.6 wt. %. The suspensions showed pH from the range 10–11 and the value of the zeta potential of particles guaranteed their stabilization. The obtained results gave rise to the proposal of an electrostatic mechanism of stabilization of the suspensions by both dispersing agents. Oxide additives and binders were added to the suspensions and then the products (crucibles) were formed using the slip casting technique. The purpose of introducing the oxide additives was to activate sintering of silicon carbide. The sintering activators were a mixture of aluminium and yttrium oxides in a mass ratio of 3:2 and in the amount of 10% by weight. Acrylic binder in the amount of 0,5, 2, 5 and 10 wt. % was used as an additive facilitating the formation of SiC powder. The products were sintered at 2050 and 2150°C. SiC materials of high density and homogeneous microstructure were produced in this way.
Czasopismo
Rocznik
Tom
Strony
10--15
Opis fizyczny
Bibliogr. 35 poz., fot., rys.
Twórcy
autor
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Wydział Inżynierii Materiałowej i Ceramiki, Al. Mickiewicza 30, 30-059 Kraków
autor
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Wydział Inżynierii Materiałowej i Ceramiki, Al. Mickiewicza 30, 30-059 Kraków
autor
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Wydział Inżynierii Materiałowej i Ceramiki, Al. Mickiewicza 30, 30-059 Kraków
autor
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Wydział Inżynierii Materiałowej i Ceramiki, Al. Mickiewicza 30, 30-059 Kraków
autor
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Wydział Inżynierii Materiałowej i Ceramiki, Al. Mickiewicza 30, 30-059 Kraków
Bibliografia
- [1] Kosolapova T. Y. (1971), Carbides, „Plenum Press”, New York, s. 257–263.
- [2] Breede F., Hofmann S., Jain N., Jemmali R. (2016), Design Manufacture, and Characterization of Carbon Fiber-Reinforced Silicon Carbide Nozzle Extension, „International Journal of Applied Ceramic Technology”, vol. 13, Issue 1, s. 3–16.
- [3] Hazan Y. de, Penner D. (2017), SiC and SiOC ceramic articles produced by stereolithography of acrylate modified polycarbosilane systems, „Journal of the European Ceramic Society”, vol. 37, Issue 16, s. 5205–5212.
- [4] Nastic A., Merati A., Bielawski M. et al. (2015), Instrumented and Vickers Indentation for the Characterization of Stiffness, Hardness and Toughness of Zirconia Toughened Al2O3 and SiC Armor, „Journal of Materials Science & Technology”, vol. 31, Issue 8, s. 773–783.
- [5] Xun Q., Xunb B., Lia Z. at al. (2017), Application of SiC power electronic devices in secondary power source for aircraft, „Renewable and Sustainable Energy Reviews”, 70, s. 1336–1342.
- [6] Taghia B., Cougo B., Piquet H. et al. (2019), Overvoltage at motor terminals in SiC-based PWM drives, „Mathematics and Computers in Simulation”, 158, s. 264–280.
- [7] Prochazka S., Scanlan R.M. (1975), Effect of boron and carbon on sintering of SiC, „Journal of the American Ceramic Society”, 58, 72–72.
- [8] Stobierski L., Gubernat A. (2003), Sintering of silicon carbide I. Effect of carbon, „Ceramics International”, 29, s. 287–292.
- [9] Stobierski L., Gubernat A. (2003), Sintering of silicon carbide I. Effect of boron, „Ceramics International”, 29, s. 355–361.
- [10] Cutler R.A., Jackson T.B. (1989), Liquid phase sintered silicon carbide, „Ceramic Materials And Components For Engines”, s. 309–318A.
- [11] Negita K. (1986), Effective sintering aids for silicon carbide ceramics: Reactivites of silicon carbide with various additives, „Journal of the American Ceramic Society”, 69, C-308-C-310.
- [12] Gubernat A., Stobierski L., Łabaj P. (2007), Microstructure and mechanical properties of silicon carbide pressureless sintered with oxide additives, „Journal of the European Ceramic Society”, 27, s. 781–789.
- [13] Gomez E., Echeberria J., Iturriza J., Castro F. (2004), Liquid phase sintering of SiC with additions of Y2O3, Al2O3 and SiO2, „Journal of the European Ceramic Society”, 24, s. 2895–2903.
- [14] Baklouti S., Pagnoux C., Chartier T., Baumard J.F. (1997), Processing of aqueous α-Al2O3, α-SiO2 and α-SiC suspensions with polyelectrolytes, „Journal of the European Ceramic Society”, vol. 17, Issue 12, s. 1387–1392.
- [15] He R., Hu P., Zhang X., Han W. et al. (2013), Preparation of high solid loading, low viscosity ZrB2–SiC aqueous suspensions using PEI as dispersant, „Ceramics International”, vol. 39, Issue 3, s. 2267–2274.
- [16] Zhang J., Xu Q., Ye F., Lin Q. et al. (2006), Effect of citric acid on the adsorption behavior of polyethylene imine (PEI) and the relevant stability of SiC slurries, „Colloids and Surfaces A: Physicochemical and Engineering Aspects”, 276 (1–3), s. 168–175.
- [17] Zhang Y., Binner J. (2008), Effect of dispersants on the rheology of aqueous silicon carbide suspensions, „Ceramics International”, 34, s. 1381–1386.
- [18] Candelario V.M., Nieto M.I., Guiberteau F. et al. (2013), Aqueous colloidal processing of SiC with Y3Al5O12 liquid-phase sintering additives, „Journal of the European Ceramic Society”, vol. 33, s. 1685–1694.
- [19] Li W., Chen P., Gu M., Jin Y. (2004), Effect of TMAH on rheological behavior of SiC aqueous suspension, „Journal of the European Ceramic Society”, 24, s. 3679–3684.
- [20] Huang Q., Gu M., Sun K., Jin Y. (2002), Effect of pretreatment on rheological properties of silicon carbide aqueous suspension, „Ceramics International”, 28, s. 747–754.
- [21] Ramachandra R.R., Roopa H.N., Kannan T.S. (1999), Effect of pH on the dispersability of silicon carbide powders in aqueous media, „Ceramics International”, vol. 25, Issue 3, s. 223–230.
- [22] Duran C., Göçmezb H., Yılmaza H. (2008), Dispersion of mechanochemically activated SiC and Al2O3 powders, „Materials Science and Engineering”, A. 475, s. 23–26.
- [23] Xiao C., Gao L., Lu M. et al. (2010), Effect of polyvinylpyrrolidone on rheology of aqueous SiC suspensions with polyethylene glycol as binder, „Colloids and Surfaces”, A: Physicochem. Eng. Aspects, 368, s. 53–57.
- [24] Si W., Graule T.J., Baader F.H., Gauckler L.J (2004), Direct coagulation casting of silicon carbide components, „Journal of the American Ceramic Society”, vol. 82, Issue 5, s. 1129–1136, DOI: 1129–1136. 10.1111/j.1151-2916.1999.tb01886.x.
- [25] Zhang T., Zhang Z., Zhang J. et al. (2007), Preparation of SiC ceramics by aqueous gelcasting and pressureless sintering, „Materials Science and Engineering”, A 443, s. 257–261.
- [26] Gubernat A,, Zych Ł., Wierzba W. (2015), SiC products formed by slip casting method, „International Journal of Applied Ceramic Technology”, Vol.12, Issue 5, s. 957–966, DOI: 10.1111/ijac.12359.
- [27] Parks G.A. (1965), The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems, „Chemical Reviews”, 65, s. 177–198. DOI: 10.1021/cr60234a002.
- [28] Klapiszewski Ł., Królak M., Jesionowski T. (2014), Silica synthesis by the solgel method and its use in the preparation of multifunctional biocomposites, „Central European Journal of Chemistry”, vol. 12, Issue 2, s. 173–184. DOI: 10.2478/s11532-013-0370-9.
- [29] Raharnan M.N., Boiteux Y., Johghe L. (1986), Surface characterization of silicon nitride and silicon carbide powers, „American Ceramic Society Bulletin”, vol. 65, Issue 8, s. 171–176.
- [30] Whitman P. K., Feke L.D. (1986), Colloidal characterization of ultrafine silicon carbide and silicon nitride powders, „Advanced Ceramic Materials”, 1, s. 366–370.
- [31] Sun J., Gao L. (2001), Dispersing SiC powder and improving its rheological behavior, „Journal of the European Ceramic Society”, vol. 21, Issue 13, s. 2447–2451, DOI: 10.1016/S0955-2219(01)00196-0.
- [32] Larsson M., Hill A., Duffy J. (2012), Suspension Stability; Why Particle Size, Zeta Potential and Rheology are Important, „Annual Transactions of the Nordic Society”, 20, s. 209–214.
- [33] Wang X. H., Hirata Y. (2004), Colloidal Processing and Mechanical Properties of SiC with Al2O3 and Y2O3, „Journal of the Ceramic Society of Japan”, vol. 112, Issue 1, s. 22–28.
- [34] Ihle J., Herrmann M., Adler J. (2005), Phase formation in porous liquid phase sintered silicon carbide: Part III: Interaction between Al2O3-Y2O3 and SiC, „Journal of the European Ceramic Society”, 25, s. 1005–1013.
- [35] Zuhl R.W., Amjad Z. (2014), Solution Chemistry Impact on Silica Polymerization by Inhibitors, rozdział 10 w: „Mineral Scales in Biological and Industrial Systems”, red. Z. Amjad, CRC Press Press Taylor and Francis Group, Boca Raton, s. 173–200.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63979c6e-96d2-4254-973e-dd9c2322193f