PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Numerical prediction of the effect of aortic Left Ventricular Assist Device outflow-graft anastomosis location

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A Left Ventricular Assist Device (LVAD) is used to provide haemodynamic support to patients with critical cardiac failure. As LVADs generate continuous flow to better understand the haemodynamic effects of these devices under different working conditions, and particularly in relation to possible outflow-graft anastomosis location, we performed 3D one-way-coupled fluid–structure-interaction (FSI) for three different LVAD working conditions and with the anastomosis location in the ascending aorta and in the descending aorta. The anatomical model used in this study is a patient-specific geometry reconstructed from computed tomography images and the mechanical support considered is similar to the Jarvik 2000®Heart LVAD. Endothelial cells can be influenced by wall stress generated from the blood flow in the artery, so they can produce vascular complications. For this reason, the second aim of this study is to evaluate and analyse, using different mechanical indicators, the wall shear distribution upon the luminal surface of the aorta generated by an LVAD. These numerical investigations demonstrate the utility of one-way-coupled FSI models to compare the haemodynamic conditions for the two LVAD outflow-grafts anastomosis locations and how both affect the aorta and its wall stress. Furthermore, the mechanical indicators allow the identification of wall regions at greater risk of atherosclerosis. The results of this study indicate that an LVAD outflow-graft anastomosis location in the ascending aorta is the optimal configuration.
Twórcy
  • School of Computer and Biomedical Engineering, ‘‘Magna Græcia’’ University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy; School of Mechanical & Design Engineering, Dublin Institute of Technology, Bolton Street, Dublin 1, Ireland
autor
  • School of Mechanical & Design Engineering, Dublin Institute of Technology, Bolton Street, Dublin 1, Ireland
autor
  • School of Mechanical & Design Engineering, Dublin Institute of Technology, Bolton Street, Dublin 1, Ireland
autor
  • Cardiac Surgery Unit, ‘‘Magna Græcia’’ University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
autor
  • School of Computer and Biomedical Engineering, ‘‘Magna Græcia’’ University of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
Bibliografia
  • [1] Yamaguchi T, Amiya E, Watanabe M, Komuro I. Improvement of severe heart failure after endovascular stent grafting for thoracic aortic aneurysm. Int Heart J 2015;56(6):682–5.
  • [2] Selzman CH, Chang PP, Vernon-Platt T, Bowen A, Kowalczyk S, Sheridan BC. Use of the Jarvik 2000 continuous flow left ventricular assist device for acute myocardial infarction and cardiogenic shock. J Heart Lung Transpl 2007;26(7):756–8.
  • [3] Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA. Patient-specific modelling of blood flow and pressure in human coronary arteries. Ann Biomed Eng 2010;38(10):3195–209.
  • [4] Gramigna V, Caruso MV, Rossi M, Serraino GF, Renzulli A, Fragomeni G. A numerical analysis of the aortic blood flow pattern during pulsed cardiopulmonary bypass. Comput Methods Biomech Biomed Eng 2014;25:1–8.
  • [5] Kiris C, Kwak D, Benkowski R. Incompressible Navier– Stokes calculations for the development of a ventricular assist device. Comput Fluids 1998;27(5):709–19.
  • [6] Bonnemain J, Malossi A, Cristiano I, Lesinigo M, Deparis S, Quarteroni A, et al. Numerical simulation of left ventricular assist device implantations: comparing the ascending and the descending aorta cannulations. Med Eng Phys 2013;35 (10):1465–75.
  • [7] Kar B, Delgrado III RM, Frazier OH, Gregoric ID, Harting MT, Wadia Y, et al. The effect of LVAD aortic outflow-graft placement on hemodynamics and flow: implantation technique and computer flow modeling. Tex Heart Inst J 2005;32(3):294–8.
  • [8] May-Newman KD, Hillen BK, Sironda CS, Dembitsky W. Effect of LVAD outflow conduit insertion angle on flow through the native aorta. J Med Eng Technol 2004;28(3):105–9.
  • [9] Osorio AF, Osorio R, Ceballos A, Tran R, Clark W, Divo EA, et al. Computational fluid dynamics analysis of surgical adjustment of left ventricular assist device implantation to minimise stroke risk. Comput Methods Biomech Biomed Eng 2011;16(6):622–38.
  • [10] Song X, Wood HG, Olsen D. Computational fluid dynamics (CFD) study of the 4th generation prototype of a continuous flow ventricular assist device (VAD). J Biomech Eng 2004;126 (2):180–7.
  • [11] Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y. Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 2009;198(45–46):3534–50.
  • [12] Brown AG, Shi Y, Arndt A, Müller J, Lawford P, Hose DR. Importance of realistic LVAD profiles for assisted aortic simulations: evaluation of optimal outflow anastomosis locations. Comput Methods Biomech Biomed Eng 2012;15 (6):669–80.
  • [13] Inci G, Sorgüven E. Effect of LVAD outlet graft anastomosis angle on the aortic valve, wall, and flow. ASAIO J 2012;58 (4):373–81.
  • [14] Karmonik C, Partovi S, Loebe M, Schmack B, Ghodsizad A, Robbin MR, et al. Influence of LVAD cannula outflow tract location on hemodynamics in the ascending aorta: a patient-specific computational fluid dynamics approach. ASAIO J 2012;58(6):562–7.
  • [15] May-Newman K, Hillen B, Dembitsky W. Effect of left ventricular assist device outflow conduit anastomosis location on flow patterns in the native aorta. ASAIO J 2006;52(2):132–9.
  • [16] Medvitz RB, Kreider JW, Manning KB, Fontaine AA, Deutsch S, Paterson EG. Development and validation of a computational fluid dynamics methodology for simulation of pulsatile left ventricular assist devices. ASAIO J 2007;53 (2):122–31.
  • [17] Tuzun E, Narin C, Gregoric ID, Cohn WE, Frazier OH. Ventricular assist device outflow-graft site: effect on myocardial blood flow. J Surg Res 2011;171(1):71–5.
  • [18] Westaby S, Frazier OH, Pigotta DW, Saito S, Jarvik RK. Implant technique for the Jarvik 2000 heart. Ann Thorac Surg 2002;73(4):1337–40.
  • [19] Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion- Robin JC, Pujol S, et al. 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 2012;30(9):1323–41.
  • [20] Gao Y, Kikinis R, Bouix S, Shenton M, Tannenbaum A. A 3D interactive multi-object segmentation tool using local robust statistics driven active contours. Med Image Anal 2012;16(6):1216–27.
  • [21] Zhang Y, Bazilevs Y, Goswmi S, Bajaj CL, Hunghes TJR. Patient-specific vascular NURBS modeling for isogeometric analysis of blood flow. Comput Methods Appl Mech Eng 2007;196(29–30):2943–59.
  • [22] Halliday I, Atherton M, Care CM, Collins MW, Evans D, Evans PC, et al. Multi-scale interaction of particulate flow and the artery wall. Med Eng Phys 2011;33(7):840–8.
  • [23] Crosetto P, Reymond P, Deparis S, Kontaxakis D, Stergiopulos N, Quarteroni A. Fluid–structure interaction simulation of aortic blood flow. Comput Fluids 2011;43 (1):46–57.
  • [24] Reymond P, Crosetto P, Deparis S, Quarteroni A, Stergiopulos N. Physiological simulation of blood flow in the aorta: comparison of hemodynamic indices as predicted by 3-D FSI, 3-D rigid wall and 1-D models. Med Eng Phys 2013;35(6):784–91.
  • [25] Jozwik K, Obidowski D. Numerical simulations of the blood flow through vertebral arteries. J Biomech 2010;43(2):177–85.
  • [26] Tortora GJ, Derrickson B. Principles of anatomy and physiology. John Wiley & Sons Ltd; 2011. p. 802–31.
  • [27] Wang X, Li X. Fluid–structure interaction based study on the physiological factors affecting the behaviors of stented and non-stented thoracic aortic aneurysms. J Biomech 2011;44(12):2177–84.
  • [28] Bols J, Degroote J, Trachet B, Verhegghe B, Segers P, Vierendeels J. A computational method to assess the in vivo stresses and unloaded configuration of patient-specific blood vessels. J Comput Appl Math 2013;246:10–7.
  • [29] Chandra S, Raut SS, Jana A, Biederman RW, Doyle M, Muluk SC, et al. Fluid–structure interaction modelling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling. J Biomech Eng 2013;135(8):81001.
  • [30] Matthies HG, Steindorf J. Partitioned but strongly coupled iteration schemes for nonlinear fluid–structure interaction. Comput Struct 2002;80(27):1991–9.
  • [31] Scotti CM, Finol EA. Compliant biomechanics of abdominal aortic aneurysms: a fluid–structure interaction study. Comput Struct 2007;85(11):1097–113.
  • [32] COMSOL Multiphysics. Structural Mechanics Module v4.3b, Users Guide; 2013.
  • [33] COMSOL Multiphysics. Reference Manual v4.3b; 2013.
  • [34] Gerbeau JF, Vidrascu M, Frey P. Fluid–structure interaction in blood flows on geometries based on medical imaging. Comput Struct 2005;83(2–3):155–65.
  • [35] Morris L, Delassus P, Callanan A, Walsh M, Wallis F, Grace P, et al. 3-D numerical simulation of blood flow through models of the human aorta. J Biomech Eng 2005;127(5):767–75.
  • [36] Murphy JB, Boyle FJ. A full-range, multi-variable, CFD-based methodology to identify abnormal near-wall hemodynamics in a stented coronary artery. Biorheology 2010;47(2):117–32.
  • [37] Liu X, Fan Y, Deng X, Zhan F. Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J Biomech 2011;44(6):1123–31.
  • [38] Morbiducci U, Gallo D, Massai D, Ponzini R, Deriu MA, Antiga L, et al. On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation. J Biomech 2011;44(13):2427–38.
  • [39] Yilmaz F, Gundogdu MY. A critical review on blood flow in large arteries; relevance to blood rheology, viscosity models, and physiologic conditions. Korea-Aust Rheol J 2008;20(4):197–211.
  • [40] Li Z, Kleinstreuer C. Blood flow and structure interaction in a stented abdominal aortic aneurysm model. Med Eng Phys 2005;27(5):369–82.
  • [41] Quaini A, Canić S, Paniagua D. Numerical characterization of hemodynamics conditions near aortic valve after implantation of left ventricular assist device. Math Biosci Eng 2011;8(3):785–806.
  • [42] Pahlevan NM, Gharib M. Low pulse pressure with high pulsatile external left ventricular power: influence of aortic waves. J Biomech 2011;44(11):2083–9.
  • [43] Kim HJ, Figueroa CA, Huges TJ, Jansen KE, Taylor CA. Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow. Comput Methods Appl Mech Eng 2009;198(45):3551–66.
  • [44] Olufsen MS, Peskin CS, Kim Y, Pedersen EM, Nadim A, Larsen J. Numerical simulation, experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann Biomed Eng 2000;28(11):1281–99.
  • [45] Bazilevs Y, Hsu MC, Zhang Y, Wang W, Kvamsdal T, Hentschel S, et al. Computational vascular fluid–structure interaction: methodology and application to cerebral aneurysms. Biomech Model Mechanobiol 2010;9(4):481–98.
  • [46] Tse KM, Chiu P, Lee HP, Ho P. Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. J Biomech 2011;44(5):827–36.
  • [47] Murphy J, Boyle F. Predicting neointimal hyperplasia in stented arteries using time-dependent computational fluid dynamics: a review. Comput Biol Med 2010;40(4):408–18.
  • [48] Morbiducci U, Gallo D, Massai D, Consolo F, Ponzini R, Antiga L, et al. Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implications for indicators of abnormal flow. J Biomech Eng 2010;132(9):0910051–09100511.
  • [49] Ku DN, Giddens DP, Zarins CK, Glagov S. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler Thromb Vasc Biol 1985;5(3): 293–302.
  • [50] Glagov S, Zarins C, Giddens DP, Ku DN. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch Pathol Lab Med 1988;112 (10):1018–31.
  • [51] Malek AM, Alper SL, Izumo S. Hemodynamic shear stress and its role in atherosclerosis. J Am Med Assoc 1999;282 (21):2035–42.
  • [52] Younis HF, Kaazempur-Mofrad MR, Chan RC, Isasi AG, Hinton DP, Chau AH, et al. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech Model Mechanobiol 2004;3 (1):17–32.
  • [53] Lee SW, Antiga L, Steinman DA. Correlations among indicators of disturbed flow at the normal carotid bifurcation. J Biomech Eng 2009;131(6):0610131–3.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63969b67-d4e3-4bbc-b5c0-729d4b4ffbad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.