Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The exploration of shale gas reservoirs in Algeria has led to significant debate in the oil and gas sector due to potential risks to the country’s declining water resources. This study focuses on assessing the risk of groundwater contamination from hydraulic fracturing (HF) in the Algerian southeast region, where the Frasnian shale gas reservoir lies between 3575 m and 3720 m deep, and the nearest aquifer Lias Horizon B is located at 1572 m. A model was developed using MODFLOW software, incorporating the characteristics of the geological layers traversed by well P-1, recently drilled in the region. A hypothetical, homogeneous, and continuous permeable pathway connecting the top of the Frasnian reservoir to the Lias Horizon B aquifer was included in the model. The study is based on simulating a reference scenario to which values observed in the region were assigned for factors influencing the migration of HF fluid. Subsequently, due to incomplete data regarding the real-world case study, a sensitivity analysis was conducted through the simulation of 11 scenarios to evaluate impact of each factor. The tracking of HF fluid pathways was performed using MODPATH software. The results show that HF fluid can reach the aquifer in 99.05 years. Sensitivity analysis identifies key factors in HF fluid migration, including the hydraulic conductivity of the permeable pathway, the fractured shale, and the extent of the induced fracture. In contrast, the lack of a permeable pathway and the limited length of the induced fracture prevent any migration of HF fluid to the aquifer.
Wydawca
Rocznik
Tom
Strony
27--44
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
- Laboratoire de Gestion et Traitement des Eaux, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, BP 1505, El M’naouer, 31000, Oran, Algérie
autor
- Laboratoire de Gestion et Traitement des Eaux, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, BP 1505, El M’naouer, 31000, Oran, Algérie
Bibliografia
- 1. Adjout, A., & Bendib, Y. (2021). Prospects for the development of shale gas in Algeria through the American experience. Journal Of North African Economies, 17(27), 59–84.
- 2. Azubuike, S. I., Songi, O., Irowarisima, M., & Chinda, J. K. (2018). Identifying policy and legal issues for shale gas development in Algeria: A SWOT analysis. The Extractive Industries and Society, 5(4), 469–480. https://doi.org/10.1016/j.exis.2018.10.005
- 3. Birdsell, D. T., Rajaram, H., Dempsey, D., & Viswanathan, H. S. (2015). Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results. Water Resources Research, 51(9), 7159–7188. https://doi.org/10.1002/2015wr017810
- 4. Boyer, C., Clark, B., Jochen, V., Lewis, R., & Miller, C. K. (2011). Shale gas: A global resource. Oilfield Review, 23(3), 28–39.
- 5. Brownlow, J. W., James, S. C., & Yelderman, J. C. (2016). Influence of hydraulic fracturing on overlying aquifers in the presence of leaky abandoned Wells. Groundwater, 54(6), 781–792. https://doi.org/10.1111/gwat.12431
- 6. Byrnes, A. P. (2011). Role of induced and natural imbibition in frac fluid transport and fate in gas shales, paper presented at Technical Workshops for Hydraulic Fracturing Study. For the Hydraulic Fracturing Study: Fate and Transport. https://19january2021snapshot.epa.gov/sites/static/files/documents/epa600r11047.pdf#page=83
- 7. Carroué, L. (2022, December 12). The Shale Gas and Oil Revolution in the United States: Technological, Territorial, and Geostrategic Issues (in French). https://geoconfluences.ens-lyon.fr/ informations-scientifiques/dossiers-thematiques/ geographie-critique-des-ressources/articles/gaz-et-petrole-de-schiste-etats-unis
- 8. Cooper, J., Stamford, L., & Azapagic, A. (2016). Shale Gas: A Review of the economic, environmental, and Social Sustainability. Energy Technology, 4(7), 772–792. https://doi.org/10.1002/ente.201500464
- 9. Domenico, P. A., & Schwartz, F. W. (1998). Physical and chemical hydrogeology. Second edition. John Wiley & Sons Inc.
- 10. Edwards, R. W., & Celia, M. A. (2018). Shale gas well, hydraulic fracturing, and formation data to support modeling of gas and water flow in shale formations. Water Resources Research, 54(4), 3196–3206. https://doi.org/10.1002/2017wr022130
- 11. Engelder, T. (2012). Capillary tension and imbibition sequester frack fluid in Marcellus Gas Shale. Proceedings of the National Academy of Sciences, 109(52). https://doi.org/10.1073/pnas.1216133110
- 12. Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall. https://www.un-igrac.org/sites/default/files/resources/files/Groundwater%20 book%20-%20English.pdf
- 13. Gassiat, C., Gleeson, T., Lefebvre, R., & McKenzie, J. (2013). Hydraulic fracturing in faulted sedimentary basins: Numerical simulation of potential contamination of shallow aquifers over long time scales. Water Resources Research, 49(12), 8310– 8327. https://doi.org/10.1002/2013wr014287
- 14. Harbaugh, A. W. (2005). MODFLOW-2005, the U.S. Geological Survey Modular Ground-water model: The ground-water flow process. U.S. Dept. of the Interior, U.S. Geological Survey. https://inside.mines.edu/~epoeter/583CSM/DOC4_MODFLOW2005- TM6A16.pdf
- 15. Howarth, R. W., Santoro, R., & Ingraffea, A. (2011). Methane and the greenhouse-gas footprint of natural gas from Shale Formations. Climatic Change, 106(4), 679–690. https://doi.org/10.1007/s10584-011-0061-5
- 16. Hu, D., & Xu, S. (2013). Opportunity, challenges and policy choices for China on the development of Shale Gas. Energy Policy, 60, 21–26. https://doi.org/10.1016/j.enpol.2013.04.068
- 17. Hwang, B., Heo, J., Lim, C., & Park, J. (2023). Environmental implications of Shale Gas Hydraulic Fracturing: A comprehensive review on water contamination and seismic activity in the United States. Water, 15(19), 3334. https://doi.org/10.3390/w15193334
- 18. Ingraffea, A. R., Wells, M. T., Santoro, R. L., & Shonkoff, S. B. (2014). Assessment and risk analysis of casing and cement impairment in oil and Gas Wells in Pennsylvania, 2000–2012. Proceedings of the National Academy of Sciences, 111(30), 10955– 10960. https://doi.org/10.1073/pnas.1323422111
- 19. International energy agency. (2024). Oil 2024 Analysis and forecast to 2030. https://www.iea.org/ reports/oil-2024.
- 20. Kaced, M., Rahmani, A., & Arab, M. (2013). The Shale Gas Potential in Algeria. (In French). https://www.researchgate.net/publication/294220035_ Shale_gas_ressources_of_Algeria.
- 21. Kargbo, D. M., Wilhelm, R. G., & Campbell, D. J. (2010). Natural gas plays in the Marcellus Shale: Challenges and potential opportunities. Environmental Science & Technology, 44(15), 5679– 5684. https://doi.org/10.1021/es903811p
- 22. Kerr, R. A. (2010). Natural gas from shale bursts onto the scene. Science, 328(5986), 1624–1626. https://doi.org/10.1126/science.328.5986.1624
- 23. Kissinger, A., Helmig, R., Ebigbo, A., Class, H., Lange, T., Sauter, M., Heitfeld, M., Klünker, J., & Jahnke, W. (2013). Hydraulic fracturing in unconventional gas reservoirs: Risks in the geological system, part 2. Environmental Earth Sciences, 70(8), 3855–3873. https://doi.org/10.1007/s12665-013-2578-6
- 24. Kuuskraa, V., Stevens, S. H., & Moodhe, K. D. (2013). Technically recoverable shale oil and shale gas resources: An assessment of 137 shale formations in 41 countries outside the United States. U.S. Energy Information Administration, U.S. Department of Energy. https://www.govinfo.gov/content/ pkg/GOVPUB-E3-PURL-gpo177574/pdf/GOVPUB-E3-PURL-gpo177574.pdf
- 25. Lange, T., Sauter, M., Heitfeld, M., Schetelig, K., Brosig, K., Jahnke, W., Kissinger, A., Helmig, R., Ebigbo, A., & Class, H. (2013). Hydraulic fracturing in unconventional gas reservoirs: Risks in the Geological System Part Environmental Earth Sciences, 70(8), 3839–3853. https://doi.org/10.1007/ s12665-013-2803-3
- 26. Langevin, C. D., Hughes, J. D., Banta, E. R., Niswonger, R. G., Panday, S., & Provost, A. M. (2017). Documentation for the MODFLOW 6 Groundwater Flow Model. U.S. Geological Survey. https://pubs.usgs.gov/tm/06/a55/tm6a55.pdf
- 27. McDonald, M. G., & Harbaugh, A. W. (1984). A modular three-dimensional finite-difference ground-water flow model. U.S. Geological Survey. https://pubs.usgs.gov/of/1983/0875/report.pdf
- 28. McGlade, C., Speirs, J., & Sorrell, S. (2013). Unconventional gas – A review of regional and Global Resource Estimates. Energy, 55, 571–584. https://doi.org/10.1016/j.energy.2013.01.048
- 29. Montcoudiol, N., Isherwood, C., Gunning, A., Kelly, T., & Younger, P. L. (2017). Shale gas impacts on groundwater resources: Understanding the behavior of a shallow aquifer around a fracking site in Poland. Energy Procedia, 125, 106–115. https://doi.org/10.1016/j.egypro.2017.08.083
- 30. Myers, T. (2012). Potential contaminant pathways from hydraulically fractured shale to aquifers. Groundwater, 50(6), 872–882. https://doi.org/10.1111/j.1745-6584.2012.00933.x
- 31. Neuzil, C. E. (1994). How permeable are clays and shales? Water Resources Research, 30(2), 145–150. https://doi.org/10.1029/93wr02930
- 32. Nield, D. A, & Bejan, A. (2006). Convection in Porous Media. Third Edition. Springer International Publishing. https://bayanbox.ir/view/3898384296897822382/convection-in-porous-media-bijan.pdf
- 33. Pfunt, H., Houben, G., & Himmelsbach, T. (2016). Numerical modeling of fracking fluid migration through fault zones and fractures in the North German Basin. Hydrogeology Journal, 24(6), 1343– 1358. https://doi.org/10.1007/s10040-016-1418-7
- 34. Picot, A., David, P., David, J., & Tsakiris, J. (2011). The Exploration and Exploitation of Shale Oil and Gas or Hydrocarbons from Source Rock by Hydraulic Fracturing, 2nd Edition. (In French). Association toxicologie-chimie. https://www.stopaugazdeschiste07.org/IMG/pdf/BILAN_TOXICOLOGIE__CHIMIE_GAZ_DE_SCHISTE.pdf
- 35. Pollock, D. W. (2012). User Guide for MODPATH Version 6 – A Particle-Tracking Model for MODFLOW. U.S. Geological Survey. https://pubs.usgs.gov/tm/6a41/pdf/TM_6A_41.pdf
- 36. Reagan, M. T., Moridis, G. J., Keen, N. D., & Johnson, J. N. (2015). Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near‐surface groundwater: Background, base cases, shallow reservoirs, short‐term gas, and Water Transport. Water Resources Research, 51(4), 2543–2573. https://doi.org/10.1002/2014wr016086
- 37. Reig, P., Luo, T., & Proctor, J. N. (2014). Global shale gas development: water availability & business risks. World Resources Institute. https://www.wri.org/research/global-shale-gas-development-water-availability-business-risks?_ga=1.7222898. 1552748366.1408189813.
- 38. Rivard, C., Lavoie, D., Lefebvre, R., Séjourné, S., Lamontagne, C., & Duchesne, M. (2014). An overview of Canadian shale gas production and environmental concerns. International Journal of Coal Geology, 126, 64–76. https://doi.org/10.1016/j. coal.2013.12.004
- 39. Schout, G., Hartog, N., Hassanizadeh, S. M., Helmig, R., & Griffioen, J. (2020). Impact of groundwater flow on methane gas migration and retention in unconsolidated aquifers. Journal of Contaminant Hydrology, 230, 103619. https://doi.org/10.1016/j. jconhyd.2020.103619
- 40. Sonatrach - Exploration. (2019). Implementation of the P-1 exploration well. Sonatrach.
- 41. Taherdangkoo, R., Tatomir, A., & Sauter, M. (2020). Modeling of methane migration from gas wellbores into shallow groundwater at Basin scale. Environmental Earth Sciences, 79(18). https://doi.org/10.1007/s12665-020-09170-5
- 42. Taherdangkoo, R., Tatomir, A., Taylor, R., & Sauter, M. (2017). Numerical investigations of upward migration of fracking fluid along a fault zone during and after stimulation. Energy Procedia, 125, 126– 135. https://doi.org/10.1016/j.egypro.2017.08.093
- 43. U.S. Energy Information Administration. (2015, September 24). Analysis & Projections: World Shale Resource Assessments. EIA. https://www.eia. gov/analysis/studies/worldshalegas/
- 44. US Environmental Protection Agency. (2012). Study of the potential impacts of hydraulic fracturing on drinking water resources: Progress report. Office of Research and Development, U.S. Environmental Protection Agency. https://cfpub.epa.gov/ncea/hfstudy/recordisplay.cfm?deid=320611
- 45. Veloso Gargur, C. T., Cabral Malgaresi, G. de V., Nani Guarieiro, L. L., & Coelho Mirre, R. (2022). Risk analysis and indentification of environmental impacts associated with hydraulic fracturing in shale gas production. Journal of Bioengineering, Technologies and Health, 5(1), 71–77. https://doi.org/10.34178/jbth.v5i1.199
- 46. Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H., & Kondash, A. (2014). A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States. Environmental Science & Technology, 48(15), 8334–8348. https://doi.org/10.1021/es405118y
- 47. Warner, N. R., Jackson, R. B., Darrah, T. H., Osborn, S. G., Down, A., Zhao, K., White, A., & Vengosh, A. (2012). Geochemical evidence for possible natural migration of marcellus formation brine to shallow aquifers in Pennsylvania. Proceedings of the National Academy of Sciences, 109(30), 11961–11966. https://doi.org/10.1073/pnas.1121181109
- 48. Whitaker, S. (1986). Flow in porous media I: A theoretical derivation of Darcy’s law. Transport in Porous Media, 1(1), 3–25. https://doi.org/10.1007/bf01036523
- 49. Wilson, M. P., Worrall, F., Davies, R. J., & Hart, A. (2017). Shallow aquifer vulnerability from subsurface fluid injection at a proposed shale gas hydraulic fracturing site. Water Resources Research, 53(11), 9922–9940. https://doi.org/10.1002/2017wr021234
- 50. Winston, R. B. (2009). ModelMuse: A graphical user interface for MODFLOW-2005 and PHAST. U.S. Geological Survey. https://permanent.fdlp.gov/ lps115196/tm6A29.pdf
- 51. Xingang, Z., Jiaoli, K., & Bei, L. (2013). Focus on the development of shale gas in China—based on SWOT analysis. Renewable and Sustainable Energy Reviews, 21, 603–613. https://doi.org/10.1016/j.rser.2012.12.044
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6395d6fb-3833-4835-b41b-fb1610aa1827
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.