PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Graphene on quartz modified with rhenium oxide as a semitransparent electrode for organic electronics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented research shows that commercially available graphene on quartz modified with rhenium oxide meets the requirements for its use as a conductive and transparent anode in optoelectronic devices. The cluster growth of rhenium oxide enables an increase in the work function of graphene by 1.3 eV up to 5.2 eV, which guarantees an appropriate adjustment to the energy levels of organic semiconductors used in organic light-emitting diode devices.
Słowa kluczowe
Rocznik
Strony
art. no. e141953
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
  • Department of Molecular Physics (member of National Photovoltaic Laboratory, Poland), Lodz University of Technology, 116 Żeromskiego St., 90-924 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
  • Department of Molecular Physics (member of National Photovoltaic Laboratory, Poland), Lodz University of Technology, 116 Żeromskiego St., 90-924 Łódź, Poland
  • Department of Molecular Physics (member of National Photovoltaic Laboratory, Poland), Lodz University of Technology, 116 Żeromskiego St., 90-924 Łódź, Poland
  • Department of Molecular Physics (member of National Photovoltaic Laboratory, Poland), Lodz University of Technology, 116 Żeromskiego St., 90-924 Łódź, Poland
  • Department of Molecular Physics (member of National Photovoltaic Laboratory, Poland), Lodz University of Technology, 116 Żeromskiego St., 90-924 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
autor
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
  • Department of Intelligent Systems, Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
  • Department of Solid State Physics (member of National Photovoltaic Laboratory, Poland), Faculty of Physics and Applied Informatics, University of Lodz, 149/153 Pomorska St., 90-236 Łódź, Poland
Bibliografia
  • [1] Zou, S. J. et al. Recent advances in organic light-emitting diodes: Toward smart lighting and displays. Mat. Chem. Front. 4, 788-820 (2020). https://doi.org/10.1039/c9qm00716d
  • [2] Hou, S. et al. Recent advances in silver nanowires electrodes for flexible organic/perovskite light-emitting diodes. Front. Chem. 10, 864186 (2022). https://doi.org/10.3389/fchem.2022.864186
  • [3] Naghdi, S., Sanchez-Arriaga, G. & Rhee, K. Y. Tuning the work function of graphene toward application as anode and cathode. J. Alloys Compd. 805, 1117-1134 (2019). https://doi.org/10.1016/j.jallcom.2019.07.187
  • [4] Adetayo, A. E., Ahmed, T. N., Zakhidov, A. & Beall, G. W. Improvements of organic light-emitting diodes using graphene as an emerging and efficient transparent conducting electrode material. Adv. Opt. Mat. 9, 2002102 (2021). https://doi.org/10.1002/adom.202002102
  • [5] Krukowski, P. et al. Work function tunability of graphene with thermally evaporated rhenium heptoxide for transparent electrode applications. Adv. Eng. Mat. 22, 1900955 (2020). https://doi.org/10.1002/adem.201900955
  • [6] Meyer, J. et al. Metal oxide induced charge transfer doping and band alignment of graphene electrodes for efficient organic light emitting diodes. Sci. Rep. 4, 5380 (2014). https://doi.org/10.1038/srep05380
  • [7] Meyer, J. et al. Transition metal oxides for organic electronics: Energetics, device physics and applications. Adv. Mat. 24, 5408-5427 (2012). https://doi.org/10.1002/adma.201201630
  • [8] Kowalczyk, D. A. et al. Local electronic structure of stable mono-layers of α-MoO3-x grown on graphite substrate. 2D Mat. 8, 025005 (2021). https://doi.org/10.1088/2053-1583/abcf10
  • [9] Kowalczyk, P. J. et al. Flexible photovoltaic cells based on two-dimensional materials and their hybrids. Przeglad Elektrotechniczny 98, 117-120 (2022). (in Polish) https://doi.org/10.15199/48.2022.02.26
  • [10] Kowalczyk, D. A. et al. Two-dimensional crystals as a buffer layer for high work function applications: the case of monolayer MoO3. ACS Appl. Mater. Interfaces. 14, 44506-44515 (2022). https://doi.org/10.1021/acsami.2c09946
  • [11] Lei, Y. et al. Graphene and beyond: recent advances in two-dimensional materials synthesis, properties, and devices. ACS Nanosci. Au (2022). https://doi.org/10.1021/acsnanoscienceau.2c00017
  • [12] Pabianek, K. et al. Interactions of Ti and its oxides with selected surfaces: Si(100), HOPG(0001) and graphene/4H-SiC(0001). Surf. Coat. Technol. 397, 126033 (2020). https://doi.org/10.1016/j.surfcoat.2020.126033
  • [13] Momeni Pakdehi, D. et al. Minimum resistance anisotropy of epitaxial graphene on SiC. ACS Appl. Mater. Interfaces. 10, 6039–6045 (2018). https://doi.org/10.1021/acsami.7b18641
  • [14] Miao, Y. et al. Small-size graphene oxide (GO) as a hole injection layer for high-performance green phosphorescent organic light-emitting diodes. J. Mater. Chem. C 9, 12408-12419 (2021). https://doi.org/10.1039/d1tc02898g
  • [15] Chen, Y., Gong, X. L. & Gai, J. G. Progress and challenges in transfer of large-area graphene films. Adv. Sci. 3, 1500343 (2016). https://doi.org/10.1002/advs.201500343
  • [16] Fisichella, G. et al. Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates. Beilstein J. Nanotechnol. 4, 234-242 (2013). https://doi.org/10.3762/bjnano.4.24
  • [17] Huet, B. & Raskin, J. P. Role of the Cu substrate in the growth of ultra-flat crack-free highly-crystalline single-layer graphene. Nanoscale 10, 21898-21909 (2018). https://doi.org/10.1039/c8nr06817h
  • [18] Zheng, F. et al. Critical stable length in wrinkles of two-dimensional materials. ACS Nano 14, 2137-2144 (2020). https://doi.org/10.1021/acsnano.9b08928
  • [19] Venables, J. A. Atomic processes in crystal growth. Surf. Sci. 299-300, 798–817 (1994). https://doi.org/10.1016/0039-6028(94)90698-X
  • [20] Greiner, M. T. et al. The oxidation of rhenium and identification of rhenium oxides during catalytic partial oxidation of ethylene: An in-situ XPS study. Z. Phys. Chem. 228, 521-541 (2014). https://doi.org/10.1515/zpch-2014-0002
Uwagi
This work was financially supported by the National Science Centre (Poland) under grants 2016/21/B/ST5/00984 (P. K., M. P., R. U., J. J., J. U.) and 2020/37/B/ST5/03929 (M. R., W. K., B. Ł., P. J. K.).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-639509ad-282b-4683-a408-49fd1c1bd69b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.