PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analiza impedancyjnych modeli granicy faz : skóra/elektrody pomiarowe

Identyfikatory
Warianty tytułu
EN
Analysis of impedance models of interface : skin/measuring electrodes
Języki publikacji
PL
Abstrakty
PL
Analiza bioimpedancyjna jest metodą rozpowszechnioną w diagnostyce medycznej, umożliwiającą strukturalną charakterystykę wybranych obszarów ciała, w tym skóry. Do wyznaczenia składowych impedancji skóry konieczne jest określenie układu zastępczego, czyli modelu tego obszaru, w postaci dwójnika zawierającego rezystory R i pojemności C. W artykule przedstawiono analizę właściwości tych układów i ich przydatności do detekcji wydzielania się potu oraz zaproponowano własny, rozbudowany model impedancyjny skóry i granicy faz: skóra/elektrody pomiarowe, obejmujący również znane z literatury schematy zastępcze, który, po optymalizacji, zostanie wykorzystany w opracowywanym systemie do oceny wysiłku fizycznego i stresu psychicznego. Podano opis matematyczny zaproponowanego impedancyjnego schematu zastępczego. Opis ten ma modułową strukturę, która jest przystosowana do analiz komputerowych.
EN
Bioimpedance analysis is a method widely used in medical diagnostics, enabling the structural characterization of selected areas of a human body, including skin. Usually the skin structural models are based on impedance measurements that are used for determination of the electrical equivalent circuit consisting of two-terminal circuits comprising resistors R and capacitances C. The paper presents an analysis of the properties of the equivalent circuits and their suitability to detect secretion of sweat, and proposed by authors’ extended skin/measuring electrodes interface models, comprising also equivalent circuits known from the literature. This model, after optimization, will be used in the system under development to assess the physical and mental stresses. The mathematical description of the proposed model based on electrical equivalent circuits with a modular structure adapted for computer analysis is presented.
Rocznik
Strony
102--106
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
  • Instytut Biocybernetyki i Inżynierii Biomedycznej im. Macieja Nałęcza PAN, Warszawa
  • Instytut Biocybernetyki i Inżynierii Biomedycznej im. Macieja Nałęcza PAN, Warszawa
Bibliografia
  • [1] J. Wtorek i inni, Pomiary bioelectroimpedancyjne, Rozdz. 23 w Tom 2 Biopomiary, W. Torbicz i inni (red.), Biocybernetyka i Inżynieria Biomedyczna, M. Nałęcz (red.), Akademicka Oficyna Wydawnicza EXIT, Warszawa, 2001.
  • [2] C. Leigh et al., Validation of a three-frequency bioimpedance spectroscopic method for body composition analysis, Nutrition, 23 (2007) 657-664.
  • [3] T. Uchiyama et al., Multi-frequency bioelectrical impedance analysis of skin rubor with two-electrode technique, J. of Tissue Viability, 17 (2008) 110-114.
  • [4] K. R. Aroom, Bioimpedance analysis: A guide to simple design and implementation, J. of Surgical Research 153 (2009) 23-30.
  • [5] F. D. Coffman, S. Cohen, Impedance measurements in the biomedical sciences, Analytical Cellular Pathology 35 (2012) 363-374
  • [6] Rosell, J., Colominas, J., Riu, P., Pallas-Areny, R., & Webster, J. Skin impedance from 1 Hz to 1 MHz. IEEE Trans. on Biomedical Engineering, 35 (1988) 649-651.
  • [7] E. J. Woo et al., Skin impedance measurement using simple and compound electrodes, Med. and Biological Eng. and Computing, 30 (1992) 97-102.
  • [8] Ø. G. Martinsen et al., Measuring depth depends on frequency in electrical skin impedance measurements, Skin Research and Technology, 5 (1999) 179-181.
  • [9] N. Sekiguchi et al., Microsensor for measurement of water content in the human skin, Sensors and Actuators B, 78 (2001) 326-330.
  • [10] I. Bodén et al., Characterization of healthy skin using near infrared spectroscopy and skin impedance, Med Biol Eng Comput, 46 (2008) 985-995.
  • [11] E. A. White et al., A critical analysis of single-frequency LCR databridge impedance measurements of human skin, Toxicology in Vitro, 25 (2011) 774-784.
  • [12] S. Grimnes et al., Electrodermal activity by DC potential and AC conductance measured simultaneously at the same skin site, Skin Research and Technology, 17 (2011) 26-34.
  • [13] M. R. Jansen et al., Validity and interobserver agreement of lower extremity local tissue water measurements in healthy women using tissue dielectric constant, Clinical Physiology and Functional Imaging, 32 (2012) 317-322.
  • [14] E. Barsoukov, J. R. Macdonald (eds.), Impedance Spectroscopy, Theory, Experiment, and Applications, A John Wiley & Sons, Inc., Publication, New Jersey, 2005.
  • [15] K. Konttuuri, L. Murtomeki, Impedance spectroscopy in human skin. A refined model, Pharmaceutical Research, 11 (1994) 1355-1357.
  • [16] D. M. Ferreira et al., Electrical impedance model for evaluation of skin irritation in rabbits and humans, Skin Research and Technology 13 (2007) 259-267.
  • [17] S. Huclova et al., Sensitivity and specificity analysis of fringing-field dielectric spectroscopy applied to a multi-layer system modelling the human skin, Physics Medicine and Biolog, 56 (2011) 7777-7793.
  • [18] F. Gómez-Aguilar et al., Frequency response of an electric equivalent circuit for a skin type system, Revista Mexicana de Ingenieria Biomédica, 32 (2011) 93-99.
  • [19] S. Huclova et al., Modeling and validation of dielectric properties of human skin in the MHz region focusing on skin layer morphology and material composition, J. of Physics D: Applied Physics, 45 (2012) 025301 (17pp).
  • [20] W. Gawędzki, Z. Marszałek, Badania symulacyjne pojemnościowego detektora wilgotności skóry, Pomiary Automatyka Kontrola, 58, Nr 4 (2012) 358-360.
  • [21] B. Sanchez et al., Novel approach of processing electrical bioimpedance data using differential impedance analysis, Medical Engineering and Physics, 35 (2013) 1349-1357.
  • [22] Z. B. Vosika et al., Fractional calculus model of electrical impedance applied to human skin, PLOS ONE, 8, (2013) e59483 12 pp.
  • [23] G. De Bruyne et al, Transient sweat response of the human head during cycling, International J. of Industrial Ergonomics, 40 (2010) 406-413.
  • [24] F. T. Amorim et al., Is sweat rate during steady state exercise related to maximum oxygen uptake? J. of Thermal Biology, 31 (2006) 521-525.
  • [25] A. Ridolfi et al., Physiological monitoring system for high altitude sports, Procedia Engineering, 2 (2010) 2889-2894.
  • [26] T. Kamei et al., Physical stimuli and emotional stress-induced sweat secretions in the human palm and forehead, Analytica Chimica Acta, 365 (1998) 319-326.
  • [27] H. Storm, Development of emotional sweating in preterms measured by skin conductance changes, Early Human Development, 62, (2001) 149-158.
  • [28] M. Winterhalter, Prospective investigation into the influence of various stressors on skin impedance, J. of Clinical Monitoring and Computing, 22 (2008) 67-74.
  • [29] M. van Dooren et al., Emotional sweating across the body: Comparing 16 different skin conductance measurement locations, Physiology and Behavior, 106 (2012) 298-304.
  • [30] Society for Psychophysiological Research ad hoc Committee on Electrodermal Measures: W. Boucesein et al., Publication recommendations for electrodermal measurements, Psychophysiology, 49 (2012) 1017-1034.
  • [31] Y. N. Kalia et al., Homogeneous transport in a heterogeneous membrane: water diffusion across human stratum corneum in vivo, Biophysical J. 71 (1996) 2692-2700.
  • [32] E. Jonathan, In vivo sweat film layer thickness measured with Fourier-domain optical coherence tomography (FD-OCT), Optics and Lasers in Engineering, 46 (2008) 424-427.
  • [33] M. Salloum et al., A new transient bioheat model of the human body and its integration to clothing models, Int. J. of Thermal Sciences, 46 (2007) 371-384.
  • [34] S. J. Benjamin et al., Measurement of soft tissue temperature and impedance following the application of transdermal direct current, Physiotherapy 93 (2007) 114-120.
  • [35] S. Gierlotka, Human body impedance in climatically bad conditions, Przegląd Elektrotechniczny, 2008, 84, nr 11, 94-98.
  • [36] K. Atkins, M. Thompson, Effect of textile hygroscopicity on stratum corneum hydration, skin erythema and skin temperature during exercise and skin temperature in the presence of wind and no wind, J. Exercise Science and Fitness, 9 (2011) 100-108.
  • [37] D. G. Pijanowska, G. Wasilewski, P. Okulski, R. Tarnecki, T. Pałko, W. Torbicz, Ocena impedancyjna struktur tkankowych, Materiały XI Krajowej Konf. Naukowej Biocybernetyka i Inżynieria Biomedyczna, Warszawa, 2-4 grudnia, 1999, str. 350-354.
  • [38] P. Zoltowski, On the electrical capacitance of interfaces exhibiting constant phase element behavior, J. of Electroanalytical Chemistry, 443 (1998) 149-154.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63915e7a-5aff-4a99-82e4-d95097878bde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.