PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of sonication and freezing on the color, mechanical and thermophysical properties of osmo-microwave-vacuum dried cranberries

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to determine the effects of sonication (S), convective freezing (F), convective freezing preceded by sonication (SF) as well as cryogenic freezing (N) on the osmo-microwave-vacuum drying kinetics, energy usage and properties of dried cranberries such as moisture content, moisture diffusion, water activity, density, porosity, thermal conductivity, thermal diffusivity, volumetric heat capacity, lightness, redness, yellowness, total differences in color, saturation and hue, hardness, cohesiveness, springiness and chewiness. Osmo-microwave-vacuum drying of cranberries took from 13.5 to 16.0 min. All initial treatments increased the moisture diffusivity and thus reduced the drying time. The most energy effective method was osmo-microwave-vacuum drying preceded by sonication (S) of fruits. Osmo-microwave-drying of cranberries subjected to convective freezing preceded by sonication (SF) resulted in the highest lightness (32.5 ± 0.5), redness (33.9 ± 0.7) and yellowness (11.3 ± 0.5) of fruits, as well as the lowest cohesion (the lowest resistant to stress associated with manufacturing, packaging, storage, and delivery). The lowest hardness, i.e. 12.3 ± 0.4 N and the highest cohesiveness and springiness, i.e. 0.38 ± 0.02 and 0.74 ± 0.03 of dried fruits, were noted for berries subjected to initial cryogenic freezing (N). Cryogenic freezing (N) combined with osmo-microwave-vacuum drying resulted in the largest color changes of fruits and the highest thermal conductivity. Sonicated and convectively frozen (SF) fruits were characterized by the highest thermal diffusivity. Sonication (S), convective freezing (F) and their combination (SF) significantly reduced the volumetric heat capacity of cranberry fruits.
Rocznik
Tom
Strony
157--174
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
  • Katedra Inżynierii Systemów, Uniwersytet Warmińsko-Mazurski, Heweliusza 14, 10-718 Olsztyn, Poland
  • Department of Systems Engineering, University of Warmia and Mazury
  • Department of Systems Engineering University of Warmia and Mazury
Bibliografia
  • Beaudry C., Raghavan G.S.V., Rennie T.J. 2003. Microwave finish drying of osmotically dehydrated cranberries. Drying Technology, 21(9): 1797-1810.
  • Chong Ch.H., Figiel A., Chung L.L., Wojdylo A. 2014. Combined Drying of Apple Cubes by Using of Heat Pump, Vacuum-Microwave, and Intermittent Techniques. Food Bioprocess Technology, 7: 975-989.
  • Correa J.L.G., Dantas V.A., de Mendonca K.S., Justus A. 2016. Optimization of pulsed vacuum osmotic dehydration of sliced tomato. In: Drying and Energy Technologies. Eds. J. Delgado, A. Barbosa de Lima. Advanced Structured Materials, 63. Springer, Cham.
  • Czajkowska K., Kowalska H., Cichowska J., Wojnowski M. 2016. Osmotic dehydration of apple in chokeberry juice concentrate. Postępy Techniki Przetwórstwa Spożywczego, 2: 5-11.
  • Figiel A. 2009. Drying kinetics and quality of vacuum-microwave dehydrated garlic cloves and slices. Journal of Food Engineering, 94: 98-104.
  • Grabowski S., Marcotte M., Poirier M., Kudra T. 2002. Drying characteristics of osmotically pretreated cranberries – energy and quality aspects. Drying Technology, 20(10): 1989-2004.
  • Kowalska H., Czajkowska K., Cichowska J., Skarżynska K. 2016. Zastosowanie odwadniania osmotycznego w produkcji żywności mało przetworzonej. Postępy Techniki Przetwórstwa Spożywczego, 1: 87-99.
  • Nowak I., Kowalska S. 2007. Application of microwaves in chemistry. Analityka: Nauka i Praktyka, 4: 4-10.
  • Nowak K.W., Zielinska M., Waszkielis K.M. 2019. The effect of ultrasound and freezing/thawing treatment on the physical properties of blueberries. Food Science and Biotechnology, 28: 741-749.
  • Rahman S. 1995. Food Properties Handbook. CRC Press Inc, Boca Raton.
  • Schmidt E.L., Klocker K., Flacke N., Steimle F. 1998. Applying the transcritical CO2 process to a drying heat pump. International Journal of Refrigeration, 21(3): 202-211.
  • Siucinska K., Konopacka D., Mieszczakowska-Frac M., Polubok A. 2016a. The effects of ultrasound on quality and nutritional aspects of dried sour cherries during shelf-life. LWT - Food Science and Technology, 68: 168-173.
  • Siucinska K., Mieszczakowska-Frac M., Polubok A., Konopacka D. 2016b. Effects of ultrasound assistance on dehydration processes and bioactive component retention of osmo-dried sour cherries. Journal of Food Science, 81(7): C1654-C1661.
  • Staniszewska I., Dzadz L., Xiao H.W., Zielinska M. 2020. Evaluation of storage stability of dried cranberry powders based on the moisture sorption isotherms and glass transition temperature. Drying Technology, doi: 10.1080/07373937.2020.1771362.
  • Staniszewska I., Staszynski S., Zielinska M. 2019. Application of sonication and freezing as initial treatments before microwave-vacuum drying of cranberries. Technical Sciences, 22(2): 151-167.
  • Stojanovic J., Silva J.L. 2007. Influence of osmotic concentration, continuous high frequency ultrasound and dehydration on antioxidants, colour and chemical properties of rabbiteye blueberries. Food Chemistry, 101: 898-906.
  • Wray D., Ramaswamy H.S. 2013. Microwave-osmotic dehydration of cranberries under continuous flow medium spray conditions. International Journal of Microwave Science and Technology, 2013: 1-11.
  • Wray D., Ramaswamy H.S. 2015. Development of a microwave–vacuum-based dehydration technique for fresh and microwave–osmotic (MWODS) pretreated whole cranberries (Vaccinium macrocarpon). Drying Technology, 33(7): 796-807.
  • Yogendrarajah P., Samapundo S., Devlieghere F., Saeger S., Meulenaer B. 2015. Moisture sorption isotherms and thermodynamic properties of whole black peppercorns (Piper nigrum L.). LWT – Food Science and Technology, 64(1): 177-188.
  • Zheng Y., Wang C.Y., Wang S.Y., Zheng W. 2003. Effect of high-oxygen atmospheres on blueberry phenolics, anthocyanins, and antioxidant capacity. Journal of Agricultural and Food Chemistry, 51: 7162-7169.
  • Zielinska M., Markowski M. 2012. Color Characteristics of Carrots: Effect of Drying and Rehydration. International Journal of Food Properties, 15: 450-466.
  • Zielinska M., Markowski M. 2018. Effect of microwave-vacuum, ultrasonication, and freezing on mass transfer kinetics and diffusivity during osmotic dehydration of cranberries. Drying Technology, 36(10): 1158-1169.
  • Zielinska M., Markowski M., Zielinska D. 2019. The effect of freezing on the hot air and microwave vacuum drying kinetics and texture of whole cranberries. Drying Technology, 37(13): 1714-1730.
  • Zielinska M., Ropelewska E., Markowski M. 2017. Thermophysical properties of raw, hot-air and microwave-vacuum dried cranberry fruits (Vaccinium macrocarpon). LWT - Food Science and Technology, 85: 204-211.
  • Zielinska M., Ropolewska E., Zapotoczny P. 2018a. Effects of freezing and hot air drying on the physical, morphological and thermal properties of cranberries (Vaccinium macrocarpon). Food and Bioproducts Processing, 110: 40-49.
  • Zielinska M., Sadowski P., Blaszczak W. 2015. Freezing/thawing and microwave assisted drying of blueberries (Vaccinium corymbosum L.). LWT - Food Science and Technology, 62(1, 2): 555-563.
  • Zielinska M., Zielinska D. 2019. Effects of freezing, convective and microwave-vacuum drying on the content of bioactive compounds and color of cranberries. LWT - Food Science and Technology, 104: 202-209.
  • Zielinska M., Zielinska D., Markowski M. 2018b. The effect of microwave-vacuum pretreatment on the drying kinetics, color and the content of bioactive compounds in osmo-microwave-vacuum dried cranberries (Vaccinium macrocarpon). Food and Bioprocess Technology, 11: 585-602.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-638fa43f-e9fb-497a-b41f-a8d4ca61b350
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.