PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Core loss resistance impact on sensorless speed control of an induction motor using hybrid adaptive sliding mode observer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Induction motors (IMs) experience power losses when a portion of the input power is converted to heat instead of driving the load. The combined effect of copper losses, core losses, and mechanical losses results in IM power losses. Unfortunately, the core losses in the motor, which have a considerable impact on its energy efficiency, are not taken into account by the generally employed dynamic model in the majority of the studies. Due to this, the motor rating often corresponds to the worst-case load in applications, but the motor frequently operates below rated conditions. A hybridized model reference adaptive system (MRAS) with sliding mode control (SMC) is used in this study for sensorless speed control of an induction motor with core loss, allowing the motor to operate under a variety of load conditions. As a result, the machine can run at maximum efficiency while carrying its rated load. By adjusting the 𝛼-axis current in the 𝛼 𝛽 reference frame in vector-controlled drives, the system’s performance is enhanced by running the motor at its optimum flux. Regarding the torque and speed of both induction motors with and without core loss, the Adaptive Observer Sliding Mode Control (AOSMC) has been constructed and simulated in this case. The AOSMC with core loss produced good performance when the proposed controller was tested.
Rocznik
Strony
895--913
Opis fizyczny
Bibliogr. 35 poz., fig., tab.
Twórcy
autor
  • Faculty of Electrical and Control Engineering, Gdansk University of Technology Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
autor
  • Faculty of Electrical and Control Engineering, Gdansk University of Technology Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
  • Faculty of Electrical and Control Engineering, Gdansk University of Technology Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland
Bibliografia
  • [1] Rouabah Z., Abdelhadi B., Anayi F., Zidani F., On-line losses minimization of induction motor vector control, Archives of Electrical Engineering, vol. 60, no. 3, pp. 257–268 (2011), DOI: 10.2478/v10171-011-0024-5.
  • [2] Ryszard B., Estimation of parameters of selected converter drives, Archives of Electrical Engineering, vol. 61, no. 4, pp. 533–565 (2012), DOI: 10.2478/v10171-012-0041-z.
  • [3] Wogi L., Ayana T., Morawiec M., Andrzej J., A Comparative Study of Fuzzy SMC with Adaptive Fuzzy PID for Sensorless Speed Control of Six-Phase Induction Motor, Energies, vol. 15, no. 8183, pp. 1–29 (2022), DOI: 10.3390/en15218183.
  • [4] Wogi L., Thelkar A., Tahiro T., Ayana T., Urooj S., Larguech S., Particle Swarm Optimization Based Optimal Design of Six-Phase Induction Motor for Electric Propulsion of Submarines, Energies, vol. 15, no. 2994, pp. 1–21 (2022), DOI: 10.3390/en15092994.
  • [5] Quan N., Tam N., Nho N., Nghia D., Sliding Mode Control of a Three Phase Induction Motor Based on Reference Model, International Conf. on System Science and Engineering (ICSSE), Ho Chi Minh City, Vietnam, pp. 702–716 (2017), DOI: 10.1109/ICSSE.2017.8030968.
  • [6] Mohanty K., Sensorless sliding mode control of induction motor drives, TENCON 2008 - 2008 IEEE Region 10 Conference, Hyderabad, India, pp. 1–6 (2008), DOI: 10.1109/TENCON.2008.4766709.
  • [7] Colin S., Adaptive speed identification for vector control of induction motors without rotational transducers, IEEE Transactions on Industry Applications, vol. 28, no. 5, pp. 1054–1061 (1992), DOI: 10.1109/28.158829.
  • [8] Bazzi A., Krein P., Review of methods for real-time loss minimization in induction machines, IEEE Transactions on Industry Applications, vol. 46, no. 6, pp. 2319–2328 (2010), DOI: 10.1109/TIA.2010.2070475.
  • [9] Liu X., Yu H., Continuous adaptive integral-type sliding mode control based on disturbance observer for PMSM drives, Springer Nature, vol. 34, no. 104, pp. 1429–1441 (2021), DOI: 10.1007/s11071-021-06360-z.
  • [10] Wenxin Y., Shao Dao H., Dan J., A fault monitoring method for wind power generation system based on sliding mode observer, Archives of Electrical Engineering, vol. 67, no. 3, pp. 625–643 (2020), DOI: 10.24425/aee.2020.133922.
  • [11] Navaneethan S., Kanthalakshmi S., Aandrew B.S., Lyapunov stability based sliding mode observer for sensorless control of PMSM, Bull. of The Polish Academy of Sciences Technical Sciences, vol. 70, no. 2, pp. 1–8 (2022), DOI: 10.24425/bpasts.2022.140353.
  • [12] Mahdi S., Alireza S., Vahab N., Cristian G., Jose R., Integral Sliding Mode Observer-Based Ultra local Model for Finite-Set Model Predictive Current Control of Induction Motor, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 10, no. 3, pp. 2912–2922 (2022), DOI: 10.1109/JESTPE.2021.3110797.
  • [13] Morawiec M., Lewicki A., Application of Sliding Switching Functions in Backstepping Based Speed Observer of Induction Machine, IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5843–5853 (2020), DOI: 10.1109/TIE.2019.2914645.
  • [14] Maamouri R., Trabelsi M., Boussak M., M’Sahli F., Second-order SMO-based sensorless control of IM drive: experimental investigations of observer sensitivity and system reconfiguration in post fault operation mode, IET Electric Power Applications, vol. 15, no. 1, pp. 811–823 (2020), DOI:10.1049/elp2.12057.
  • [15] Bartolini G., Punta E., Zolezzi T., First and Second Order Slide Mode Regularization Techniques: The Approximability Property, Elseiver 16th Triennial World Congress, Prague, Czech Republic, pp. 878–882 (2005), DOI: 10.3182/20050703-6-CZ-1902.00802.
  • [16] Di Gennaro S., Rivera J., Meza M., Sensorless High Order Sliding Mode Control of Induction Motors With Core Loss, IEEE Transactions on Industrial Electronics, vol. 61, no. 6, pp. 2678–2689 (2014), DOI: 10.1109/TIE.2013.2276311.
  • [17] Zhao Y., Yu H., Wang S., An Improved Super-Twisting High-Order Sliding Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motor, Energies, vol. 14, no. 6047, pp. 1–18 (2021), DOI: 10.3390/en14196047.
  • [18] Horch M., Boumediene A., Baghli L., Sensorless High-order Super Twisting Sliding Modes Vector Control for Induction Motor Drives, 8th International Conference on Modelling, Identification and Control, Algiers, Algeria, pp. 237–2442 (2016), DOI: 10.1109/ICMIC.2016.7804115.
  • [19] Salah E., Djamel S., Noureddine G., High-performance induction motor drive based on adaptive supertwisting sliding mode control approach, Archives of Electrical Engineering, vol. 71, no. 1, pp. 245–263 (2022), DOI: 10.24425/aee.2022.140208.
  • [20] Djilali K., Mohamed T., Mohamed S., Improved direct torque control of induction motors using adaptive observer and sliding mode control, Archives of Control Sciences, vol. 23, no. 3, pp. 361–376 (2013), DOI: 10.2478/acsc-2013-0022.
  • [21] Johnson B., Willis J., Tailoring induction motor analytical models to fit known motor performance characteristics and satisfy particular study needs, IEEE Transactions on Power Systems, vol. 6, no. 3, pp. 959–965 (1991), DOI: 10.1109/59.119235.
  • [22] Leedy A., Simulink/MATLAB Dynamic Induction Motor Model for use in Undergraduate Electric Machines and Power Electronics Courses, 2013 Proceedings of IEEE SoutheastCon, Jacksonville, FL, USA, pp. 1–6 (2013), DOI: 10.1109/SECON.2013.6567399.
  • [23] Kirschen D., Novotny D., Lipo T., On-line efficiency optimization of a variable frequency induction motor drive, IEEE Trans. on Industrial Application, vol. 21, pp. 610–615 (1985), DOI: 10.1109/TIA.1985.349717.
  • [24] Chakraborty C., Hori Y., Fast Efficiency Optimization Techniques for the Indirect Vector-Controlled Induction Motor Drives, IEEE Transactions on Industry Applications, vol. 39, no. 4, pp. 1070–1076 (2003), DOI: 10.1109/TIA.2003.814550.
  • [25] Fernández-Bernal F., Garcia-Cerrada A., Faure R., Model-Based Loss Minimization for DC and AC Vector-Controlled Motors Including Core Saturation, IEEE Transactions on Industry Applications, vol. 36, no. 3, pp. 755–763 (2000), DOI: 10.1109/28.845050.
  • [26] Guo Z., Zihang Q., The Study on Mathematical Model and Simulation of Asynchronous Motor Considering Iron Loss, Journal of Physics: Conference Series, Shanghai, China, pp. 1–7 (2018), DOI: 10.1088/1742-6596/1060/1/012085.
  • [27] Ibtissem B., Souad Ch., Abdesselam M., High performance backstepping control of induction motor with adaptive sliding mode observer, Archives of Control Sciences, vol. 21, no. 3, pp. 331–344 (2011), DOI: 10.2478/v10170-010-0047-y.
  • [28] Dunnigan M., Wade S., Williams B., Yu X., Position control of a vector controlled induction machine using Slotine’s sliding mode control approach, IEE Proceedings - Electric Power Applications, vol. 145, no. 3, pp. 231–238 (1998), DOI: 10.1177/014233120102300202.
  • [29] Orlowska-Kowalska T., Tarchala G., Unified approach to the sliding-mode control and state estimation, Bull. of the Polish Academy of Sciences, Technical Sciences, vol. 61, no. 4, pp. 837–846 (2013), DOI: 10.2478/bpasts-2013-0090.
  • [30] Adamowicz M., GuzińskiJ., Minimum-time minimum-loss speed sensorless control of induction motors under nonlinear control, conf. paper in IEEE Compatibility in Power Electronics, Gdynia, Poland, pp. 1–7 (2015). DOI: 10.1109/CPE.2005.1547546" 10.1109/CPE.2005.1547546.
  • [31] Chang J., Kim B., Minimum-Time Minimum-Loss Speed Control of Induction Motors Under Field-Oriented Control, IEEE Transactions on Industrial Electronics, vol. 44, no. 6, pp. 809–815 (1997), DOI: 10.1109/41.649942.
  • [32] Xu X., Novotny D., Selecting the flux reference for induction machine drives in the field weakening region, IEEE Transactions on Industry Applications, vol. 28, pp. 1353–1358 (1992), DOI: 10.1109/IAS.1991.178180.
  • [33] Kassem R., Sayed K., Kassem A., Mostafa R., Power optimization scheme of induction motor using FLC for electric vehicle, IET Electrical Systems in Transportation, vol. 10, no. 3, pp. 301–309 (2020), DOI: 10.1049/iet-est.2019.0151.
  • [34] Sahoo A., Jena R., Loss minimization of induction motor-driven electric vehicle using teamwork optimization, International Journal of Ambient Energy, vol. 43, no. 1, pp. 8123–8134 (2022), DOI: 10.1080/01430750.2022.2091036.
  • [35] Sayed K., El-Zohri E., Mahfouz H., Analysis and design for interleaved ZCS buck DC-DC converter with low switching losses, International Journal of Power Electronics, vol. 8, no. 3, pp. 210–231 (2017), DOI: 10.1504/IJPELEC.2017.085076.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-638d2aa9-4c82-480e-b533-58f62516563e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.