PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Evaluation of RMS Current in AC Power Wires Using a High-Speed Infrared System

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ewaluacja wartości skutecznej RMS prądu przemiennego w przewodach elektroenergetycznych z wykorzystaniem radiacyjnego pomiaru temperatury systemami IR
Języki publikacji
EN
Abstrakty
EN
This paper presents a new method of the effective value (RMS) of alternating current (AC) in power wires based on infrared radiation (IR) measurement using a high-speed medium-wavelength infrared (MWIR) camera. The method called “2-ω” involves measurement of the 100 Hz harmonic of temperature (T100) and is supported by signal analysis in the frequency domain. The article discusses the issue of non-sinusoidal alternating current, which causes much more difficult analyzes compared to sinusoidal current with a frequency of 50/60 Hz. The simulation and measurement results for different current shapes obtained in typical power systems like: a phase-controlled switching regulator, half-wave and full-wave rectifiers, and finally the nonlinear distortion of the AC current due to saturation of the magnetic core, are presented and confirm the linear relation of T100 ~ I2RMS . The main advantage of proposed method is the independence of the measurement results from environmental conditions.
PL
Artykuł przedstawia nową metodę pomiaru wartości skutecznej (RMS) prądu przemiennego (AC) w przewodach elektroenergetycznych w oparciu o pomiar promieniowania podczerwonego (IR) za pomocą szybkiej kamery IR, o średniej długości fali (MWIR). Metoda zwana „2-ω”, polega na pomiarze harmonicznej temperatury 100 Hz (T100) i analizie sygnału w dziedzinie częstotliwości. W artykule poruszono problematykę niesinusoidalnego prądu przemiennego, który powoduje znacznie trudniejsze analizy w porównaniu z prądem sinusoidalnym o częstotliwości 50/60 Hz. Wyniki symulacji i pomiarów dla różnych kształtów prądu uzyskanych w typowych układach elektroenergetycznych, takich jak: regulator przełączający - sterowany fazowo, prostowniki jednopołówkowe i dwupołówkowe, oraz nieliniowe odkształcenie prądu przemiennego na skutek nasycenia rdzenia magnetycznego, przedstawiono i potwierdzono liniową zależność T100 ~ I2RMS. Główną zaletą proponowanej metody jest niezależność wyników pomiarów od warunków środowiskowych.
Rocznik
Strony
61--71
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr., wzory
Twórcy
  • Lodz University of Technology, Institute of Electronics, Al. Politechniki 10, B-9 building, 93-590 Lodz, Poland
  • Lodz University of Technology, Institute of Electronics, Al. Politechniki 10, B-9 building, 93-590 Lodz, Poland
Bibliografia
  • 1. Karsenty A., A Comprehensive Review of Integrated Hall Effects in Macro-, Micro-, Nanoscales, and Quantum Devices. “Sensors”, Vol. 20, No. 15, 2020, DOI: 10.3390/s20154163.
  • 2. Zhang Z., Leggate D., Matsuo T., Industrial Inverter Current Sensing with three shunt resistors: Limitations and Solutions. “IEEE Transactions on Power Electronics”, 2017, 4577-4586. DOI: 10.1109/TPEL.2016.2596778.
  • 3. Ouameur M., Ziadé F., Le Bihan Y., Toward a calculable standard shunt for current measurement at 10 A and up to 1 MHz. “IEEE Transactions on Instrumentation and Measurement”, Vol. 68, No. 6, 2019, 2215-2222, DOI: 10.1109/TIM.2018.2884553.
  • 4. El-Goharey H.S.K., Mamdouh W.M., On-line analysis of power quality problems in non-sinusoidal/non-linear distribution systems. “Ain Shams Engineering Journal”, Vol. 14, No. 9, 2023, DOI: 10.1016/j.asej.2023.102266.
  • 5. Monteiro F.P., Monteiro S.A., Tostes M.E., Bezerra U.H., Using True RMS Current Measurements to Estimate Harmonic Impacts of Multiple Nonlinear Loads in Electric Distribution Grids. “Energies”, Vol. 12, No. 21, 2019, DOI: 10.3390/en12214132.
  • 6. Crescentini M., Syeda S.F., Gibiino G.P., Hall-Effect Current Sensors: Principles of Operation and Implementation Techniques. “IEEE Sensors Journal”, Vol. 22, No. 11, 2022, 10137-10151, DOI: 10.1109/JSEN.2021.3119766.
  • 7. Kadri S., Applications of InAs Hall Effect Sensor. “Sensors and Transducers Journal”, Vol. 119, No. 8, 2010, 22-29.
  • 8. Silventoinen P., Kuisma M., Review on the Current Measurement systems in Power Electronics. International Conference on Efficient Welding in Industrial Applications (ICEWIA), Lappeenranta, Finland, 1999.
  • 9. Lalwani A.V., Yalamarthy A.S., Alpert H.S., Holiday M., Eisner S.R., Chapin C.A., Senesky D.G., Hall-Effect Sensor Technique for No Induced Voltage in AC Magnetic Field Measurements Without Current Spinning. “IEEE Sensors Journal”, Vol. 22, No. 2, 2022, 1245-1251, DOI:10.1109/JSEN.2021.3130527.
  • 10. Liu J., Sanli A.S., Wang Y., Liu Ch., Error Compensation of closed Loop Hall Effect Current Sensors. IEEE International Workshop on Applied Measurements for Power Systems (AMPS), Germany, Aachen, September 26-28, 2012.
  • 11. Flores-Arias J.-M., Ortiz-Lopez M., Latorre F.J.Q., Bellido-Outeiriño F.J., Moreno-Muñoz A., A Memory-Efficient True-RMS Estimator in a Limited-Resources Hardware. “Energies”, Vol. 12, No. 9, 2019, DOI: 10.3390/en12091699.
  • 12. Wang K., Yang X., Li H., Wang L., A High-Bandwidth Integrated Current Measurement for Detecting Switching Current of Fast GaN Devices. “IEEE Transactions on Power Electronics”, Vol. 33, No. 7, 2018, 6199-6210, DOI: 10.1109/TPEL.2017.2749249.
  • 13. Nanyan A.N., Isa M., Hamid H.A., Rohani M.N.K.H., Ismail B., The Rogowski Coil Sensor in High Current Application: A Review. IOP Conference Series Materials Science and Engineering. 2018, Vol. 318, DOI: 10.1088/1757-899X/318/1/012054.
  • 14. Samini M.H., Mahari A., Farahnakin M.A., Mohseni H., The Rogowski Coil Principles and Applications: A Review. “IEEE Sensors Journal”, Vol. 15, No. 2, 2014, 651-658, DOI: 10.1109/JSEN.2014.2362940.
  • 15. Kato H., Saito M., Takahashi Y., Yoshino K., Domae A., Kiryu S., Nobu-Hisa K., Development and Evaluation of a Simple Shunt Module for High DC Current Measurement. “IEEE Transactions on Power Delivery”, Vol. 38, No. 3, 2023, 1656-1664, DOI: 10.1109/TPWRD.2022.3224072.
  • 16. Voljc B., Lindic M., Lapuh R., Direct Measurement of AC Current by Measuring the Voltage Drop on the Coaxial Current Shunt. “IEEE Transactions on Instrumentation and Measurement”, Vol. 58, No. 4, 2009, 863-867, DOI: 10.1109/TIM.2008.2007074.
  • 17. Pogliano U., Bosco G.C., Serazio D., Coaxial Shunts as AC-DC Transfer Standards of Current. “IEEE Transactions on Instrumentation and Measurement”, Vol. 58, No. 4, 2009, 872-877, DOI: 10.1109/TIM.2008.2008469.
  • 18. Malinowski M., Kubiczek K., Kampik M., A precision coaxial current shunt for current AC-DC transfer. “Measurement”, Vol. 176, 2021, DOI: 10.1016/j.measurement.2021.109126.
  • 19. Shillaber L., Jiang Y., Ran L., Long T., Ultrafast Current Shunt (UFCS): A Gigahertz Bandwidth Ultra Low Inductance Current Sensor. “IEEE Transactions on Power Electronics”, Vol. 37, No. 12, 2022, 15493-15504, DOI: 10.1109/TPEL.2022.3184638.
  • 20. Sydenham P.H., Thorn R., Handbook of Measuring System Design, Chapter: 202 Current Measurement, 3 Volume Set, 1st Edition, Wiley, 2005, DOI: 10.1002/0471497398.mm320.
  • 21. Silva J.I., Sousa V., Sarmiento P., Gómez J.R, Viego P.R., Quispe E.C., Effects of power electronics devices on the Energy quality of an administrative building. “International Journal of Power Electronics and Drive Systems”, Vol. 10, No. 4, 2019, 1951-1960, DOI: 10.11591/ijpeds.v10.i4.pp1951-1960.
  • 22. Mohassel R.R., Fung A., Mohammadi F., Raahemifar K., A survey on Advanced Metering Infrastructure. “International Journal of Electrical Power and Energy Systems”, Vol. 63, 2014, 473-484. DOI: 10.1016/j.ijepes.2014.06.025.
  • 23. Torzyk B., Więcek B., A method of RMS current measurement especially in low and medium voltage power lines and cable. Polish patent submission. No. 428676, 2019.
  • 24. Torzyk B., Więcek B., Measurement of High-Frequency sub-noise temperature signal and RMS current using a single-detector high-speed IR system. “Pomiary Automatyka Robotyka”, Vol. 27, No. 4, 2023. 53-56, DOI: 10.14313/PAR_250/53.
  • 25. Torzyk B., Więcek B., Second-Harmonic Contactless Method for Measurement of RMS Current using a standard Infrared Camera. “IEEE Transactions on Instrumentation and Measurement”, Vol. 70, 2021, DOI: 10.1109/TIM.2021.3077676.
  • 26. Kałuża M., Hatzopoulos A., Application of extension rings in thermography for electronic circuits imaging. “Quantitative InfraRed Thermography Journal”, Vol. 21, 2024, 50-68, DOI: 10.1080/17686733.2022.2146419.
  • Other sources
  • 27. Torzyk B., Więcek B., Method of measuring the effective value of current, in particul air in power cables and wires of LV and MV Networks. Silver Medal for the Invention, 2022 Kaohsiung International Invention & Design EXPO 1-3 December, 2022 Kaohsiung, Taiwan.
  • 28. Torzyk B., Więcek B., Methode de mesure de la valeur effective du courant. Silver Medal for the Invention. Geneva inventions, Geneva, 28.04.2023.
  • 29. AEC - Q200: Stress Test Qualification for Passive Components, Automotive Electronics Council Component Technical Committee, 2023
  • 30. IEC 61000-4-7:2002 Electromagnetic compatibility (EMC) - Part 4-7: Testing and measurement techniques - General guide on harmonics and interharmonics measurement and instrumentation, for power supply systems and equipment connected thereto.
  • 31. IEC 61000-4-30:2015 Electromagnetic compatibility (EMC) - Part 4-30: Testing and measurement techniques - Power quality measurement methods.
  • 32. IATF 16949:2016 Quality management system for organizations in the automotive industry, International Automotive Task Force (IATF) standard.
  • 33. Chauvin Arnoux, A110 AmpFlex flexible sensor, [https://catalog.chauvin-arnoux.com/fr_en/nf-gb-ampflex-a110-flexible-ac-current-sensors-a110-130.html].
  • 34. IEEE. Standard for Harmonic Control in Electric Power Systems, IEEE Std 519-2022 (Revision of IEEE Std 519-2014), 1-31, 5 Aug. 2022, DOI: 10.1109/IEEESTD.2022.9848440.
Uwagi
This research was funded by Inkubator Innowacyjności 4.0, grant number, MNISW/2020/326/DIR.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-638a086f-7cdb-443c-b0be-9ac32dfc4982
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.