PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrothermal ore mineralization from the Polish part of the Tatra Mts., Central Western Carpathians

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several areas with hydrothermal ore mineralization are present in the Polish part of the Western Tatra Mts. Massive and disseminated sulfides, mainly minerals from the tetrahedrite group and chalcopyrite, fill quartz veins accompanied by siderite, dolomite and baryte – many of these were mined between the 16th and 18th century. This paper presents information on the mineralogy of the common sulfides and the preliminary studies of both the isotopic composition of sulfur in tetrahedrite as well as the origin of hydrothermal fluids. The most common primary sulfide minerals in the ores are tetrahedrite-(Zn) and tetrahedrite-(Fe) corresponding to Zn ranges from 1.83 to 5.87 wt.% (0.47–1.44 apfu), and Fe from 1.63 to 5.05 wt.% (0.48–1.52 apfu). The substitution of As for Sb shows maximum As content of 7.25 wt.% (1.588 apfu) which corresponds to the Sb/(Sb+As) = 0.60. Both varieties show substitutions of Bi and Hg, up 0.6 wt.% (0.049 apfu) and 0.96 wt.% (0.081 apfu), respectively, and content of trace elements: Co (max. 976 ppm), Cd (max. 735 ppm), In (max. 14 ppm). Chalcopyrite, pyrite, and galena show compositions close to the ideal formula. Differences in the content of trace elements in the studied tetrahedrite and chalcopyrite were explained by element partitioning between these minerals. The distributions of In, Ga and Sn in the studied minerals indicate that the mineralization was formed at low temperature and pressure. The homogenization temperature of the primary inclusions in quartz in the range of 120–174°C indicate the origin of mineralization in low temperature stage from low salinity fluids (up to 17.92 wt.% NaCl eq.). Stable δ34S isotopes in minerals of the tetrahedrite group suggest that the igneous fluids might be one of the sources from which ores were crystallized.
Wydawca
Rocznik
Strony
159--179
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
  • Tatra National Park, Zakopane, Poland
  • AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry, Krakow, Poland
  • AGH University of Science and Technology, Department of Mineralogy, Petrography and Geochemistry; Krakow, Poland
  • University of Warsaw, Institute of Geochemistry, Mineralogy and Petrology; Warsaw, Poland
  • Geological Institute, Bulgarian Academy of Sciences; 1113 Sofia, Bulgaria
  • Slovak Academy of Sciences, Earth Science Institute; Banská Bystrica, Slovakia
Bibliografia
  • Andráš P., Chovan M., 2005. Gold incorporation into from the Tatric Unit, the Western Carpathians, with respect to their chemical composition. Journal of the Czech Geological Society, 50, 3–4. https://doi.org/10.3190/jcgs.984.
  • Bakker R.J., 2019. Package fluids. Part 5: The NaCl-H2O system in fluid inclusion research and applications of the software AqSo_NaCl. Chemical Geology, 525, 400–413. https://doi.org/10.1016/j.chemgeo.2019.07.041.
  • Bakos F., 2003. Hydrotermálne minerálizacje v kryštaliniku Tatier. Univerzita Komenského [Ph.D. thesis].
  • Bezák V., Biely A., Elecko M., Koneèný V., Mello J., Polák M. & Potfaj M., 2011. A new synthesis of the geological structure of Slovakia – the general geological map at 1:200 000 scale. Geological Quarterly, 55, 1, 1–8.
  • Biagioni C., George L. L, Cook N. J., Makovicky E., Moëlo Y., Pasero M., Sejkora J., Stanley C. J., Welch M. D. & Bosi F., 2020. The tetrahedrite group: Nomenclature and classification. American Mineralogist, 105, 1, 109–122. https://doi.org/10.2138/am-2020-7128 109.
  • Bodnar R.J., 2003. Introduction to aqueous fluid systems. [in:] Samson I., Anderson A. & Marshall D. (eds.), Fluid Inclusions: Analysis and Interpretation, Mineralogical Association of Canada – Short Course, 32, Mineralogical Association of Canada, Vancouver, 81–99.
  • Gaweł A., 1966. Itinerarium po śladach robót górniczych w „Srebrnych Górach” w Tatrach Zachodnich. [in:] Maślankiewicz K. (red.), Prace z zakresu historii nauk geologicznych, Prace Muzeum Ziemi, 8, Wydawnictwa Geologiczne, Warszawa, 7–29.
  • Gawęda A. & Paulo A., 1998. Mineralizacja pomagmowa stref ścinania w Tatrach Zachodnich. Mineralogical Society of Poland – Special Papers, 11, 84–86.
  • Gawęda A., Goławska B., Jędrysek M.O., Leichman J., Paulo A. & Włodyka R., 2001. Carbonate mineralization in the Tatra Mts. Crystalline basement. Mineralogical Society of Poland – Special Papers, 18, 39–42.
  • Gawęda A., Jędrysek O.M. & Zieliński G., 2007. Polystage mineralization in tectonic zones in Tatra Mountains, Western Carpathians. [in:] Kozłowski A. & Wiszniewska J. (eds.), Granitoids in Poland, Archivum Mineralogiae Monograph, 1, Faculty of Geology of the Warsaw University, Warszawa, 341–353.
  • George L.L., Cook N.J. & Ciobanu C.L., 2016. Partitioning of trace elements in co-crystallized sphalerite–galena–chalcopyrite hydrothermal ores. Ore Geology Reviews, 77, 97–116. https://doi.org/10.1016/j.oregeorev.2016.02.009.
  • George L.L., Cook N.J. & Ciobanu C.L., 2017. Minor and Trace Elements in Natural Tetrahedrite-Tennantite: Effects on Element Partitioning among Base Metal Sulphides. Minerals, 7, 17. https://doi.org/10.3390/min7020017.
  • George L.L., Cook N.J., Crowe B.B. & Ciobanu C.L., 2018. Trace elements in hydrothermal chalcopyrite. Mineralogical Magazine, 2, 59–88. https://doi.org/10.1180/minmag.2017.081.021.
  • Guillong M., Meier D.L., Allan M.M., Heinrich C.A. & Yardley B.W.D., 2008. Appendix A6: SILLS: A MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. [in:] Sylvester P. (ed.), Laser Ablation ICP–MS in the Earth Sciences: Current Practices and Outstanding Issues, Mineralogical Association of Canada – Short Course, 40, Mineralogical Association of Canada, Vancouver, 328–333.
  • Hoefs J., 2009. Stable Isotope Geochemistry. 6th ed. SpringerVerlag Berlin Heidelberg.
  • Hók J., Pelech O., Teťák F., Németh Z. & Nagy A., 2019. Outline of the geology of Slovakia (W. Carpathians). Mineralia Slovaca, 51, 31–60.
  • Hurai V., Harčová E., Ozdín D., Prochaska W. & Wiegerová V., 2002. Origin of siderite veins in the Western Carpathians. I. P-T-X-δ13C-δ18O relations in ore-forming brines of the Rudňany deposits. Ore Geology Reviews, 21, 67–101.
  • Hurai V., Lexa O., Schulmann K., Montigny R., Prochaska W., Frank W., Konecny P., Kral J., Thomas R. & Chovan M., 2008. Mobilization of ore fluids during Alpine metamorphism: evidence from hydrothermal veins in the Variscan basement of Western Carpathians, Slovakia. Geofluids. https://doi.org/10.1111/j.1468-8123.2008.00216.x.
  • Jost H. & Paulo A., 1985. Złoża dawne, górnictwo i przemysł. Mapa w skali 1:50 000. [in:] Trafas K. (red.), Atlas Tatrzańskiego Parku Narodowego, Tatrzański Park Narodowy, Zakopane; Polskie Towarzystwo Przyjaciół Nauk o Ziemi. Oddział w Krakowie, Kraków, 29.
  • Jost H., 2004. Dzieje górnictwa i hutnictwa w Tatrach Polskich. Materiały Towarzystwa Muzeum Tatrzańskiego im. dra Tytusa Chałubińskiego w Zakopanem, 12, Muzeum Tatrzańskie, Zakopane.
  • Jurewicz E. & Kozłowski A., 2003. Formation conditions of quartz mineralization in the mylonitic zones and on the slickenside fault planes in the High Tatra granitoids. Archiwum Mineralogiczne, 54, 65–76.
  • Kreutz S., 1918. Sprawozdanie z poszukiwań mineralogiczno-geologicznych w Tatrach zachodnich w r. 1917. [in:] Sprawozdanie Komisji Fizjograficznej obejmujące pogląd na czynności dokonane w ciągu roku 1917 oraz Materjały do fizjografji kraju, 52, Akademja Umiejętności, Kraków, 141–146.
  • Kubač A., Chovan M., Ozdín D. & Pukančík L., 2015. Hydrothermal Pb-Zn base-metal mineralization at the Marianka locality, the Malé Karpaty Mts. (Slovak republic). Bulletin mineralogicko-petrologického oddělení Národního muzea v Praze, 22, 1, 56–67.
  • Kutaś P., 2005. Górnictwo kruszcowe w Tatrach Polskich do I rozbioru Rzeczypospolitej. Wydawnictwo Promo, Kraków.
  • Liberak A.M., 1927. Górnictwo i hutnictwo w Tatrach polskich. Wierchy, 5, 13–30.
  • Luptáková J., Milovská S., Jeleň S., Mikuš T., Milovský R. & Biroň A., 2016. Primary ore Cu mineralization at the Ľubietová-Podlipa locality (Slovakia). Acta Geologica Slovaca, 8, 2, 175–194.
  • Majzlan J., Hurai V. & Chovan M., 2001. Fluid inclusion study on hydrothermal As-Au-Sb-Cu-Pb-Zn veins in the Mlynná Dolina Valley (Western Carpathians, Slovakia). Gelogica Carpathica, 52, 5, 277–286.
  • Majzlan J., Berkh K., Koděra P., Števko M., Bakos F. & Milovský R., 2016. A mineralogical, fluid inclusion, and isotopic study of selected epithermal Ag-Au occurrences in the Banská Štiavnica–Hodruša-Hámre ore district, Western Carpathians. Acta Geologica Slovaca, 8, 2, 133–147.
  • Majzlan J., Chovan M., Hurai V. & Luptáková J., 2020. Hydrothermal mineralisation of the Tatric Superunit (Western Carpathians, Slovakia): I. A review of mineralogical, thermometry and isotope data. Geologica Carpathica, 71, 2, 85–112. https://doi.org/10.31577/GeolCarp.71.2.1.
  • Makovicky E., Chovan M. & Bakos F., 2007. The stibian mustard gold from the Kriváň Au deposit, Tatry Mts., Slovak Republic. Neues Jahrbuch für Mineralogie, Abhandlungen, 184, 2, 207–215. https://doi.org/10.1127/0077-7757/2007/0096.
  • Mikuš T., Chovan M., 2003. Hydrothermal Sb-Au mineralization in the St Strážovské Vrchy Mountains (Malá Magura, Western Carpathians). Geologica Carpathica, 54, 4, 207–216.
  • Paulo A., 1970. Mineralizacja barytowo-kwarcowo-siarczkowa w Tatrach w świetle nowych danych. [in:] Pelc A. (red.), Geneza, występowanie i poszukiwanie barytu, Prace Instytutu Geologicznego, 59, Wydawnictwa Geologiczne, Warszawa, 255–266.
  • Paulo A., 1979. Tatrzańskie złoża kopalin. Przegląd Geologiczny, 27, 7, 396–399.
  • Pawlica W., 1916. O złożach mineralnych granitu tatrzańskiego. [in:] Sprawozdanie Komisyi Fizyograficznej obejmujące pogląd na czynności dokonane w ciągu lat 1914 i 1915 oraz Materyały do fizyografii kraju, 50, Akademia Umiejętności Kraków, 155–170.
  • Piotrowska K. (kier.), 2016. Szczegółowa Mapa Geologiczna Tatr w skali 1: 10 000 (SMGT). Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, Warszawa.
  • Plašienka D., Grecula P., Putiš M., Kováč, M. & Hovorka D., 1997. Evolution and structure of the Western Carpathians: an overview. [in:] Grecula P., Hovorka D. & Putiš M. (eds.), Geological Evolution of the Western Carpathians, Mineralia Slovaca – Monograph, Mineralia Slovaca Corporation-Geocomplex, Bratislava, 1–24.
  • Radvanec M., Grecula P. & Žák K., 2004. Siderite mineralization of the Gemericum superunit (Western Carpathians, Slovakia): review and a revised model. Ore Geology Reviews, 24, 267–298. https://doi.org/10.1016/j.oregeorev.2003.07.004.
  • Števko M., Pršekk J., Smirnov A., Ozdín D., 2009. Chemické zloženie sulfidov a sulfosolí z ložiska Mária-Margita pri Ochtinej. Mineralia Slovaca, 41, 151–158.
  • Wątocki W., 1951. Żyły mineralne na Ornaku w Tatrach Zachodnich. Rocznik Polskiego Towarzystwa Geologicznego, 20, 11–60.
  • Zhang X., Zhai S., Yu Z., 2020. Strontium Isotope Compositions of Hydrothermal Barite from the Yonaguni IV: Insight into Fluid/Sediment Interaction and Barite Crystallization Condition. Journal of Ocean University of China volume (Oceanic and Coastal Sea Research), 19, 2, 377–385. https://doi.org/10.1007/s11802-020-4021-4.
  • Zwoliński S., 1961. Urządzenia kopalni Na Kunsztach w Dolinie Kościeliskiej w Tatrach. Kwartalnik Historii Nauki i Techniki, 6, 3, 457–467.
  • Zwoliński S., 1962. Badania nad historią górnictwa i hutnictwa w Tatrach Polskich. Etnografia Polska, 6, 163–191.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63854209-c033-44e5-a982-2f3ce7eee1e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.