PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improved classification robust Kalman filtering method for precise point positioning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The accuracy and reliability of Kalman filter are easily affected by the gross errors in observations. Although robust Kalman filter based on equivalent weight function models can reduce the impact of gross errors on filtering results, the conventional equivalent weight function models are more suitable for the observations with the same noise level. For Precise Point Positioning (PPP) with multiple types of observations that have different measuring accuracy and noise levels, the filtering results obtained with conventional robust equivalent weight function models are not the best ones. For this problem, a classification robust equivalent weight function model based on the t-inspection statistics is proposed, which has better performance than the conventional equivalent weight function models in the case of no more than one gross error in a certain type of observations. However, in the case of multiple gross errors in a certain type of observations, the performance of the conventional robust Kalman filter based on the two kinds of equivalent weight function models are barely satisfactory due to the interaction between gross errors. To address this problem, an improved classification robust Kalman filtering method is further proposed in this paper. To verify and evaluate the performance of the proposed method, simulation tests were carried out based on the GPS/BDS data and their results were compared with those obtained with the conventional robust Kalman filtering method. The results show that the improved classification robust Kalman filtering method can effectively reduce the impact of multiple gross errors on the positioning results and significantly improve the positioning accuracy and reliability of PPP.
Rocznik
Strony
267--281
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Beihang University, School of Automation Science and Electrical Engineering, Beijing, China
  • Beihang University, Digital Navigation Center, Beijing, China
autor
  • Beihang University, School of Automation Science and Electrical Engineering, Beijing, China
  • Beihang University, Digital Navigation Center, Beijing, China
autor
  • Beihang University, School of Automation Science and Electrical Engineering, Beijing, China
  • Beijing Satellites Navigation Center, Beijing, China
Bibliografia
  • [1] Kouba, J., Héroux, P. (2001). Precise point positioning using IGS orbit and clock products. GPS solutions, 5(2), 12-28.
  • [2] Zumberge, J.F., Heflin, M.B., Jefferson, D.C. (1997). Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research Solid Earth, 102(B3), 5005-5017.
  • [3] Wang, M., Chai, H.Z., Li, Y. (2017). Performance analysis of BDS/GPS precise point positioning with undifferenced ambiguity resolution. Advances in Space Research, 60(12), 2581-2595.
  • [4] Subirana, S.J., Juan, Z.J.M., Hernández-Pajares, H. (2013). GNSS Data Processing, I. Fundamentals and Algorithms. 1nd ed. Netherlands: ESA Communications.
  • [5] Kouba J., Lahaye, F., Tétreault, P. (2017). Precise Point Positioning. Teunissen P.J., Montenbruck O., eds. Springer Handbook of Global Navigation Satellite Systems. Springer Handbooks. Springer, Cham,723-751.
  • [6] Li, Z.K., Yao, Y.F., Wang, J., Gao, J.X. (2017). Application of Improved Robust Kalman Filter in Data Fusion for PPP/INS Tightly Coupled Positioning System. Metrol. Meas. Syst., 24(2), 289-301.
  • [7] Guo, F., Zhang, X.H. (2014). Adaptive robust Kalman filtering for precise point positioning. Measurement Science and Technology, 25(10), 105-113.
  • [8] Wang, Y., Zhang, C.D., Hu, X.G., Song, Y.Z., Ma, S.L. (2016). Robust Kalman filter based on different satellite types and it’s application in GPS/BDS precise point positioning. Journal of Chinese Inertial Technology, 24(6), 769-779.
  • [9] Yang, Y.X. He, H.B., Xu, G. (2001). Adaptively robust filtering for kinematic geodetic positioning. Journal of Geodesy, 75(1), 109-116.
  • [10] Yang, Y.X., Wu, F.M. (2006). Modified equivalent weight function with variable criterion for robust estimation. Journal of Zhengzhou institute of Surveying and Mapping, 23(5), 137-320.
  • [11] Lin, G.L., Liu, L., Cai, C., Li, J.Y, Hang, L. (2015). An improved Two-Step M estimation method based on the Danish method. Journal of Geodesy and Geodynamics, 35(2), 235-238.
  • [12] Krarup, T., Juhl, J., Kubik, K. (1980). Gotterdammerlung over least squares adjustment. 14th Congress ISP Hamburg, 36-38.
  • [13] Yang, Y.X., Xu, J.Y. (2016). GNSS receiver autonomous integrity monitoring (RAIM) algorithm based on robust estimation. Geodesy and Geodynamics, 7(2), 117-123.
  • [14] Huang, Y.L., Zhang, Y.G., Wu, Z.M., Li, N., Chamber, J. (2017). A novel robust Student’s based Kalman filter. IEEE Transactions on Aerospace and Electronic Systems, 53(3), 1545-1554.
  • [15] Zhang, Q.Q., Zhao, L.D., Zhao, L., Zhou, J.H. (2018). An improved robust adaptive Kalman Filter for GNSS Precise Point Positioning. IEEE Sensors Journal, 18(10), 4176-4186.
  • [16] Gao, Y., Shen, X. (2001). Improving ambiguity convergence in carrier phase-based precise point positioning. Proceeding of ION GPS 2001, Salt Lake City, UT, 1532-1539.
  • [17] Zhang, B.C., Ou, J.K., Yuan, Y.B., Zhong, S.M. (2010). Precise point positioning algorithm based on original dual-frequency GPS code and carrier-phase observations and its application. Acta Geodaetica et Cartographica Sinica, 39(5), 478-483.
  • [18] Zhao, X.W., Liu, C., Deng, J., Zhang, C.Y., Yu, X.X. (2016). A modified un-combined model to improve the performance of precise point positioning: model and test results. Acta Geod Geophys, 52(3), 1-14.
  • [19] Li, B.F., Ge, H.B., Shen, Y.Z. (2015). Comparison of Ionosphere-free, Uofc and Uncombined PPP Observations Models. Acta Geodaetica et Cartographica Sinica, 44(7), 734-740.
  • [20] Bona, P. (2000). Precise, Cross Correlation, and Time Correlation of GPS Phase and Code Observations. GPS Solutions, 4(2), 3-13.
  • [21] Hajiyew, C., Berberoglu, M.I. (2005). EKF based user’s position estimation using GNSS measurements. AIAC conference. Available: https://www.researchgate.net/publication/312161002.
  • [22] Takasu, T. (2013). PPP (Precise Point Positioning).RTKLIB ver. 2.4.2 Manual.
  • [23] Cheng, Y.J., Sun, H.Y., Cheng, H.B. (2004). Robust estimate of Kalman filtering and its application in adjustment of dynamic leveling network. Engineering of Surveying Mapping, 13(4), 55-57.
  • [24] Zhou, W.W. (2000). t-test the superlative test to discard abnormal values with unknown. Journal of Sichuan University of Science and Technology, 19(3), 84-86.
  • [25] Brumback, B., Srinath, M. (1987). A Chi-square test for fault-detection in Kalman filters. IEEE Transactions on Automatic Control, 32(6), 552-554.
  • [26] IGS data center of WuhanUniversity. Available:http://wzw.cn/index.php/Home/DataProduct/mgex.html.
Uwagi
EN
1. This project was supported by the National Natural Science Foundation of China (Grants No. 41874034, 41574024 ), the National Science and Technology Major Project of the National Key R&D Program of China (Grant No.2016YFB0502102), the Beijing Natural Science Foundation (Grant No. 4162035), and the Aeronautical Science Foundation of China (Grant No. 2016ZC51024), and the Academic Excellence Foundation of BUAA for PhD Students.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-637e372d-a341-4d00-9ad1-7d5bb8a8acbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.