PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancement of Air-groundMatching by Means of a Chirped MultilayerStructure: Electromagnetic Modelingwith the Method of Single Expression

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The enhancement of air-ground electromagneticmatching by means of a chirped multilayer structure is inves-tigated. The modeling and simulation of the considered struc-ture are performed by using the method of single expression(MSE), which is a convenient and accurate tool for wavelength-scale simulations of multilayers comprising lossy, amplifyingor nonlinear (Kerr-type) materials. Numerical results showthat a suitable chirped multilayer structure can reduce the re- ection from the ground. Different values of the number oflayers and of the layer thicknesses are considered. The distributions of the electric eld components and the power owdensity within the modelled structures are calculated.
Rocznik
Tom
Strony
30--36
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • National Polytechnic University of Armenia, Yerevan, Armenia
autor
  • National Polytechnic University of Armenia, Yerevan, Armenia
  • National Polytechnic University of Armenia, Yerevan, Armenia
autor
  • National Institute of Telecommunications, Warsaw, Poland
autor
  • Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
Bibliografia
  • [1] L. B. Conyers and D. Goodman, Ground Penetrating Radar: An Introduction for Archaeologists. London and New Delhi: AltaMira Press, Walnut Creek, 1997.
  • [2] D. J. Daniels, Ed., Ground Penetrating Radar, 2nd ed. London: The Institution of Engineering and Technology, 2004.
  • [3] H. M. Jol, Ground Penetrating Radar: Theory and Applications. Elsevier, 2009.
  • [4] D. J. Daniels, “GPR Design Challenges, COST Action TU1208, in Proc. The 1st Action’s Gen. Meet. of the COST Action TU1208, Rome, Italy, 2013.
  • [5] R. Persico, Introduction to Ground Penetrating Radar. Wiley-IEEE Press, 2014.
  • [6] A. Benedetto and L. Pajewski, Civil Engineering Applications of Ground Penetrating Radar. Springer, 2015.
  • [7] F. Finck, “Introduction of a ground penetrating radar system for investigations on concrete structures”, Otto-Graf-Journal, vol. 14, pp. 35–44, 2003.
  • [8] R. J. Yelf, “Application of Ground Penetrating Radar to civil and geotechnical engineering”, Electromag. Phenom., vol. 7, no. 18, pp. 102–117, 2007.
  • [9] D. Goodman and S. Piro, GPR Remote Sensing in Archaeology. Berlin Heidelberg: Springer, 2013.
  • [10] L. Pajewski and A. Benedetto, Eds., Civil Engineering Applications of Ground Penetrating Radar, Proceedings of COST Action TU1208: First General Meeting, Rome, Italy, 2013.
  • [11] L. Pajewski and X. Derobert, Eds., Proceedings of COST Action TU1208: Civil Engineering Applications of Ground Penetrating Radar, 2014 Working Group Progress Meeting, Nantes, France, 2014.
  • [12] K. Takahashi, J. Igel, H. Preetz, and S. Kuroda, “Basics and application of Ground-Penetrating Radar as a tool for monitoring irrigation process”, in Problems, Perspectives and Challenges of Agricultural Water Management, M. Kumar, Ed. InTech, 2012, pp. 155–180.
  • [13] A. P. Annan, Ground Penetrating Radar Principles, Procedures Applications. Sensors & Software Inc., 2003.
  • [14] Z.-Q. Zhu, L.-X. Peng, G.-Y. Lu, and S.-W. Mi, “Borehole-GPR numerical simulation of full wave field based on convolutional perfect matched layer boundary”, J. Cent. South Univ., vol. 20, no. 3, pp. 764–769, 2013 (doi: 10.1007/s11771-013-1546-3).
  • [15] S. Lambot, F. Andr´ e, E. Slob, and H. Vereecken, “Effect of antennamedium coupling in the analysis of ground-penetrating radar data”, Near Surface Geophys., vol. 10, pp. 631–639, 2012.
  • [16] W. Kang et al., “A Study of antenna configuration for bistatic Ground-Penetrating Radar”, in Proc. of the 16th Int. Conf. of Ground Penetrating Radar (GPR), Hong Kong, China, 2016.
  • [17] H. V. Baghdasaryan, “Method of backward calculation”, in Photonic Devices for Telecommunications: How to Model and Measure, G. Guekos, Ed. Springer, 1999, pp. 56–65.
  • [18] H. V. Baghdasaryan and T. M. Knyazyan, “Problem of plane EM wave self-action in multilayer structure: An exact solution”, Optical and Quant. Electron., vol. 31, pp. 105–1072, 1999.
  • [19] H. V. Baghdasaryan and T. M. Knyazyan, “Modelling of strongly nonlinear sinusoidal Bragg gratings by the Method of Single Expression”, Optical and Quant. Electron., vol. 32, no. 6-8, pp. 869–883, 2000.
  • [20] H. V. Baghdasaryan and T. M. Knyazyan, “Method of single expression – an exact solution for wavelength scale 1D photonic structures’ computer modeling”, Proceedings of SPIE, vol. 5260, pp. 141–148, 2003.
  • [21] H. V. Baghdasaryan, Basics of the Method of Single Expression: New Approach for Solving Boundary Problems in Classical Electrodynamics. Yerevan: Chartaraget, 2013.
  • [22] H. V. Baghdasaryan, T. M. Knyazyan, T. T. Hovhannisyan, M. Marciniak, and L. Pajewski, “Numerical modelling of GPR groundmatching enhancement by a chirped multilayer structure – output of cooperation within COST Action TU1208”, EGU General Assembly 2016, Geophysical Research Abstracts, vol. 18, EGU2016-18507, 2016.
  • [23] Y.-Y. Li, K. Zhao, J.-H. Ren, Y.-L. Ding, and L.-L. Wu, “Analysis of the dielectric constant of Saline-Alkali soils and the effect on radar backscattering coefficient: A Case Study of Soda Alkaline Saline Soils in Western Jilin Province Using RADARSAT-2 Data”, The Scient. World J., vol. 2014, Article ID 563015, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6376933f-840b-4f4e-9522-cbb25dad66fa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.