PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

The influence of selected process factors on the physicochemical and biological properties of honeys: A review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Honey is one of the world's most valued natural food products. Characteristic, pleasant aroma, golden colour, sweet taste and healthpromoting properties cause a continuous increase of honey consumption in the European Union. The most wanted is regional honey. However, imported honey available on the market has often lower prices. The honey obtained can be heat treated, which reduces water content and can slow down the growth of the microorganisms, which are responsible for the undesirable fermentation of honey. Unprocessed honey appears to be the healthiest, but in practice, it’s often heat treated to slow down or back up the crystallization process and to make its dosage during technical processes easier. It is widely believed that heating of honey may have a harmful impact on its properties. There are countless articles of popular science, that warn of heating and cooking with honey. Should honey never be heated? The aim of this work is to give an overview of the influence of technical processes on the physicochemical and health-promoting properties of honey. The results demonstrated that the physicochemical and bioactive properties of honey are significantly affected by thermal treatment. As a result of the temperature, it comes to the Maillard reaction, during which HMF is synthesized. Furthermore, heating affects the activity of the enzymes contained in honey, among others, diastase and inverses. However, few studies made in this field show that honey heat treatment may work in favour of antioxidant properties. Depending on the type of honey, melanoidins may increase or decrease the antioxidant activity.
Rocznik
Strony
57--69
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
  • Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz
  • Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz
  • Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz
autor
  • Institute of Food Technology and Analysis, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Lodz
Bibliografia
  • 1. Iglesias MT, Martín-Álvarez PJ, Polo MC, de Lorenzo C, González M, Pueyo E. Changes in the Free Amino Acid Contents of Honeys During Storage at Ambient Temperature. J. Agric. Food Chem. 2006, 54(24): 9099-9104.
  • 2. Hermosı́n I, Chicón RM, Cabezudo MD. Free amino acid composition and botanical origin of honey. Food Chem. 2003, 83(2): 263-268.
  • 3. Da Silva PM, Gauche C, Gonzaga LV, Costa AC, Fett R. Honey: Chemical composition stability and authenticity. Food Chem. 2016, 196:309-323.
  • 4. Anklam E. A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem. 1998, 63(4): 549-562.
  • 5. Kruszewski B, Jedlińska A, Antczak M, Witrowa-Rajchert D. Novel method of producing honey powders and assessment of their biological activity. ZYWN-NAUK TECHNOL JA. 2014, 1(92): 160-172.
  • 6. Subramanian R, Umesh H, Rastogi NK. Processing of Honey: A Review. Int J Food Prop. 2007, 10(1): 127-143.
  • 7. Abdel-Aal E-SM, Ziena HM, Youssef MM. Adulteration of honey with high-fructose corn syrup: Detection by different methods. Food Chem. 1993 48(2): 209-212.
  • 8. European Commission, Honey Market Presentation, (http://www.europarl.europa.eu/news/en/headlines/economy/20180222STO98435/key-facts-about-europe-s-honey-market-infographic) Ref.: 20180222STO98435 Created: 28-02-2018-11:40.
  • 9. Bakier S. Odwracalność procesu krystalizacji miodu. Postępy Techniki Przetwórstwa Spożywczego. 2006, 16(1): 30-34. In Polish.
  • 10. Baltes W, Matissek R. Kohlenhydrate, [in:] Lebensmittelchemie. 2011, Springer. Berlin Heidelberg. In German.
  • 11. Codex Stan 12-1981 FAO/WHO. Norme codex pour le miel, 1981, 12, 39-55.
  • 12. Council Directive 2001/110/EC of 20 December 2001, relating to honey. Official Journal L 010, 12/01/2002: 47-52.
  • 13. Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 18 lutego 2004 r. zmieniające rozporządzenie w sprawie szczegółowych wymagań w zakresie jakości handlowej miodu. Dz.U. 2004. Nr poz. 0. In Polish.
  • 14. Germond JE, Philippossian G, Richli U, Bracco I, Arnaud MJ. Rapid and complete urinary elimination of [14C]-5-(hydroxymethyl)-2-furaldehyde. J Toxicol Environ Health. 1987, 22(1): 79-89.
  • 15. Nazmul I, Ibrahim K, Asiful I, Siew HG. Toxic compounds in honey. J Appl Toxicol. 2014, 34(7): 733-42.
  • 16. Lee HS, Nagy S. Relative reactivities of sugars in the formation of 5-hydroxymethylfurfural in sugar-catalyst model systems. J Food Process Preserv. 1990, 14(3): 171-178.
  • 17. Turhan I, Tetik N, Karhan M, Gurel F, Tavukcuoglu HR. Quality of honeys influenced by thermal treatment. LWT - Food Sci Technol. 2008, 41(8): 1396-1399.
  • 18. Kroh LW. Caramelisation in food and beverages. Food Chem. 1994, 51(4): 373-379.
  • 19. Bogdanov S, Martin P, Lüllmann C. Harmonised methods of the European Honey Commission, in: Apidologie, 1997, Elsevier. France, pp.1-59.
  • 20. Khan ZS, Nanda V, Bhat MS, Khan A. Kinetic studies of HMF formation and diastase activity in two different honeys of Kashmir. Int J Curr Microbiol Appl Sci. 2015, (4)4: 97-107.
  • 21. Kowalski S. Changes of antioxidant activity and formation of 5-hydroxymethylfurfural in honey during thermal and microwave processing. Food Chem. 2013, 141(2): 1378-1382.
  • 22. Morales SJ, Jimenez-Perez S. Peroxyl radical scavenging activity of melanoidins in aqueous systems. Eur Food Res Technol. 2004, 218(6): 515-520.
  • 23. Turkmen N, Sari F, Ender S, Poyrazoglu Y. Effects of prolonged heating on antioxidant activity and colour of honey. Food Chem. 2006, 95(4): 653-657.
  • 24. Aljadi A, Yusoff KM. Evaluation of the phenolic contents and antioxidant capacities of two Malaysian floral honeys. Food Chem. 2004, 85(4): 513-518.
  • 25. Bertoncelj J, Doberšek U, Jamnik M, Golob T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105(2): 822-828.
  • 26. Brudzynski K, Miotto D. The relationship between the content of Maillard reactionlike products and bioactivity of Canadian honeys. Food Chem. 2011, 124(3): 869-874.
  • 27. Brudzynski K, Miotto D. Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity. Food Chem. 2011, 127(3): 1023-1030.
  • 28. Wilczyńska A. Zmiany barwy oraz aktywności antyoksydacyjnej miodów podczas przechowywania. Bromatol Chem Toksyk. 2011, 44(3): 945-950. In Polish.
  • 29. Chaikham P, Prangthip P. Alteration of antioxidative properties of longan flowerhoney after high pressure, ultra-sonic and thermal processing. Food Biosci. 2015, 10: 1-7.
  • 30. Fauzi NA, Farid, MM, Silva F. High-Pressure Processing of Manuka Honey: Improvement of Antioxidant Activity, Preservation of Colour and Flow Behaviour. Food Bioproc Tech. 2014, 7(8): 2299-2307.
  • 31. Hellwig M, Rückriemen J, Sandner D, Henle T. Unique Pattern of Protein-Bound Maillard Reaction Products in Manuka (Leptospermum scoparium) Honey. J Agric Food Chem. 2017, 65(17): 3532-3540.
  • 32. Brudzynski K. Effect of hydrogen peroxide on antibacterial activities of Canadian honeys. Can J Microbiol. 2006, 52(12): 1228-1237.
  • 33. Bílikova K, Huang SC, Lin IP, Šimuth J, Peng CC. Structure and antimicrobial activity relationship of royalisin, an antimicrobial peptide from royal jelly of Apis mellifera. Peptides 2015, 68: 90-96.
  • 34. Bucekova M, Juricova V, Monton E, Martinotti S, Ranzato E, Majtan J. Microwave processing of honey negatively affects honey antibacterial activity by inactivation of bee-derived glucose oxidase and defensin-1. Food Chem. 2018, 240: 1131-1136.
  • 35. Hebbar HU, Nandinin K, Lakshmi M, Subramanian R. Microwave and infrared heat processing of honey and its quality. Food Sci Technol Res. 2003, 9(1): 49-53.
  • 36. Zheng-Wie C, Li-Juan S, Wie C, Da-Wen S. Preparation of dry honey by microwave-vacuum drying. J. Food Eng. 2008, 84(4): 582-590.
  • 37. Vadivambal R, Jayas DS. Non-uniform Temperature Distribution During Microwave Heating of Food Materials—A Review. Food Bioprocess Tech. 2010, 3(2): 161-171.
  • 38. Shi Q, Fang Z, Bhandari B. Effect of Addition of Whey Protein Isolate on Spray-Drying Behavior of Honey with Maltodextrin as a Carrier Material. Drying Technol. 2013, 31(13-14): 1681-1692.
  • 39. Samborska K, Czelejewska M. The Influence of Thermal Treatment and Spray Drying on the Physicochemical Properties of Polish Honeys. J Food Process Preserv. 2014, 38(1): 513-419.
  • 40. Bieńkowska B, Samborska K. Physicochemical Properties of Spray Dried Honey. Zeszyty Problemowe Postępów Nauk Rolniczych, Warsaw University of Life Sciences. 2013 In Polish.
  • 41. Nurhadi B, Andoyo R, Indiarto M, Indiarto R. Study the properties of honey powder produced from spray drying and vacuum drying method. Int Food Res J. 2012, 19(3): 907-912.
  • 42. Ram AK. Production of spray-dried honey powder and its application in bread. 2011, Louisiana State University Master’s Thesis.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63768bd7-e069-4898-abcb-df6fd2c08583
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.