PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental analysis of puncture resistance of aramid laminates on styrene-butadiene-styrene and epoxy resin matrix for ballistic applications

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work aimed to evaluate the influence of the type of matrix and the number of reinforcement layers on the puncture of aramid laminates. The samples were examined under laboratory conditions and in ballistic tests. Two series of aramid laminates were produced with different types of the polymer matrix. The epoxy resin (EP) and the styrene-butadiene-styrene (SBS) copolymer were used as the matrix. For comparison, a puncture test was performed for the fabric with the same number of layers in contrast to the laminates. Laboratory tests were carried out using the InstronDynatup 9250 HV drop hammer. The results obtained during the laboratory and ballistic examinations were compared. The samples were fired with a 9 - 19 mm Parabellum projectile. Research into the low-velocity range have shown that SBS laminates absorb impact energy more effectively than epoxy resin ones, but they are similar to fabrics without a polymer matrix. The results of ballistic tests are divergent and indicate that unbound materials are more efficient at absorbing energy than laminates. The reason for this is the different damage mechanisms.
Rocznik
Strony
1327--1337
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Foundry, Polymers and Automation, Lukasiewicza 5, 50-371 Wroclaw, Poland
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Foundry, Polymers and Automation, Lukasiewicza 5, 50-371 Wroclaw, Poland
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Mechanics, Materials Science and Engineering, Smoluchowskiego 25, 50-370 Wroclaw, Poland
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Plastic and Metrology, Lukasiewicza 5, 50-370, Wroclaw, Poland
autor
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Mechanics, Materials Science and Engineering, Smoluchowskiego 25, 50-370 Wroclaw, Poland
Bibliografia
  • [1] K. Jamroziak, M. Kosobudzki, M. Majzner, The concept of fatigue test of composite materials, Vibroeng. Procedia 3 (2014) 186–189.
  • [2] M. Barcikowski, W. Krolikowski, Effect of resin modification on the impact strength of glass-polyester composites, Polimery 58 (2013) 450–460.
  • [3] L. Sorrentinoa, C. Bellinia, A. Corradoa, W. Polinia, R. Aricob, Ballistic performance evaluation of composite laminates in kevlar 29, Procedia Eng. 88 (2015) 255–262.
  • [4] S.S. Morye, P.J. Hine, R.A. Duckett, D.J. Carr, I.M. Ward, Modelling of the energy absorption by polymer composites upon ballistic impact, Compos. Sci. Technol. 60 (2000) 2631–2642.
  • [5] M. Bocian, J. Pach, K. Jamroziak, M. Kosobudzki, S. Polak, D. Pyka, J. Kurowski, Experimental and numerical analysis of aramid fiber laminates with DCPD resin matrix subjected to impact tests, in: MATEC Web of Conferences, 2017, 113: No. 04013.
  • [6] M. Barcikowski, Glass fibre/polyester composites under ballistic impact, Composites 8 (2008) 70–76.
  • [7] P.R. Subba Reddy, T. Sreekantha Reddy, I. Srikanth, V. Madhua, A.K. Gogia, K.K. Venkateswara Rao, Effect of viscoelastic behaviour of glass laminates on their energy absorption subjected to high velocity impact, Mater. Des. 98 (2016) 272–279.
  • [8] G. Gopinath, J.Q. Zheng, R.C. Batra, Effect of matrix on ballistic performance of soft body armor, Compos. Struct. 94 (2012) 2690–2696.
  • [9] J.W. Kaczmar, Manufacture, Properties and use of Composite Materials, Wroclaw University of Science and Technology, Wroclaw, 2013.
  • [10] J.G. Carrillo, R.A. Gamboa, E.A. Flores-Johnson, P.I. Gonzalez- Chi, Ballistic performance of thermoplastic composite laminates made from aramid woven fabric and polypropylene matrix, Polym. Test. 31 (2012) 512–519.
  • [11] J.L. Mena-Tun, A. Díaz-Díaz, P.I. Gonzalez-Chi, Non-linear characterization of PP/Twaron laminates based on a model of plasticity with damage, Compos. Struct. 93 (2011) 2808–2816.
  • [12] J.L. Mena-Tun, P.I. Gonzalez-Chi, A. Diaz-Diaz, Tensile properties of thermoplastic-laminated composites based on a polypropylene matrix reinforced with continuous Twaron fibers, Adv. Polym. Tech. 32 (2013) 749–759.
  • [13] A.K. Bandaru, V.V. Chavan, S. Ahmad, R. Alagirusamy, N. Bhatnagar, Ballistic impact response of Kevlar® reinforced thermoplastic composite armors, Int. J. Impact Eng. 89 (2016) 1–13.
  • [14] M. Bocian, K. Jamroziak, M. Kosobudzki, The analysis of energy consumption of a ballistic shields in simulation of mobile cellular automata, Adv. Mater. Res. 1036 (2014) 680–685.
  • [15] M. Bocian, K. Jamroziak, M. Kosobudzki, Analysis of material punching including a rotational speed of the projectile, Solid State Phenom. 220–221 (2015) 571–576.
  • [16] E. Rusinski, J. Karlinski, K. Jamroziak, The chosen aspects from research of ballistic shields, in: 22nd DANUBIA-ADRIA Symposium on Experimental Methods in Solid Mechanics, DAS PC Parma–Italy, 2005, 22–23.
  • [17] P. Tran, T.D. Ngo, A. Ghazlan, Numerical modelling of hybrid elastomeric composite panels subjected to blast loadings, Compos. Struct. 153 (2016) 108–122.
  • [18] P. Borba, A. Tedesco, D. Lenz, Effect of reinforcement nanoparticles addition on mechanical properties of SBS/ Curauá fiber composites, Mater. Res. 17 (2014) 412–419.
  • [19] J. Pach, D. Pyka, K. Jamroziak, P. Mayer, The experimental and numerical analysis of the ballistic resistance of polymer composites, Composites Part B: Eng. 113 (2017) 24–30.
  • [20] Stab Resistance of Personal Body Armor, NIJ standard- 0115.00, U.S. Department of Justice, September 2000.
  • [21] Test Standard VPAM KDIW 2004, Stab and Impact Resistance – Requirements, Classifications and Test Procedures, Deutsche Hochschule der Polizei, Polizeitechnisches Institut 18.05.2011.
  • [22] http://www.havel-composites.pl/index.php?menu=produk t&id=105: 24.04.2016r.
  • [23] K. Imielinska, R. Wojtyra, Water absorption behaviour of vinyl ester laminates reinforced with aramid and glass fibres, Kompozyty (Composites) 3 (2003) 192–197.
  • [24] Z. Li, B. Sun, B. Gu, FEM simulation of 3D angle-interlock woven composite under ballistic impact from unit cell approach, Comput. Mater. Sci. 49 (2010) 171–183.
  • [25] B. Parga-Landa, F. Hernandez-Olivares, An analytical model to predict impact behavior of soft armors, Int. J. Impact Eng. 16 (1995) 455–466.
  • [26] S.S. Sarva, S. Deschanel, M.C. Boyce, W. Chen, Stress-strain behavior of polyurea and polyurethane from low to high strain rates, Polymer 48 (2007) 2208–2213.
  • [27] J.C. Smith, F.L. McCrackin, H.F. Schiefer, Stress-strain relationships in yarn subjected to rapid impact loading. Part V: Wave propagation in long textile yarns impacted transversely, Text. Res. J. 60 (1958) 288–302.
  • [28] N.C.K. Naik, P. Shrorao, B.C.K. Reddy, Ballistic impact behavior of woven fabric composites: formulation, Int. J. Impact Eng. 32 (2006) 1521–1552.
  • [29] L. Mazurkiewicz, J. Malachowski, K. Damaziak, P. Baranowski, P. Gotowicki, Identification of layers distribution in the composite coupon using finite element method and three point bending test, Acta Mech. Automat. 7 (3) (2013) 160–165.
  • [30] L. Mazurkiewicz, M. Tomaszewski, J. Malachowski, K. Sybilski, M. Chebakov, M. Witek, P. Yukhymets, R. Dmitrienko, Experimental and numerical study of steel pipe with part-wall defect reinforced with fibre glass sleeve, Int. J. Press. Vessels Piping 149 (2017) 108–119. , http://dx.doi.org/ 10.1016/j.ijpvp.2016.12.008.
  • [31] M. Kucewicz, P. Baranowski, J. Malachowski, A. Poplawski, P. Platek, Modelling, and characterization of 3D printed cellular structures, Mater. Des. 142 (2018) 177–189. , http://dx.doi.org/ 10.1016/j.matdes.2018.01.028.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63756a25-d1b7-44ae-b088-ef9d07fa914b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.