PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pitting corrosion behaviour of austenitic stainless-steel coated on Ti6Al4V alloy in chloride solutions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study aims to investigate the influence of adding a coating layer of austenitic stainless steel type 316L on Ti6Al4V alloy on corrosion behaviour. Samples of 316L, Ti6Al4V, and 316L on Ti6Al4V were prepared by hot-press sintering of their powders. The potentiodynamic polarization technique was used to characterize the corrosion behaviour of the samples in 0.9 and 3.5 wt. % NaCl concentrations. The corrosion potential (Ecorr.), current density (icorr) and corrosion rate (CR) of the sintered samples were compared in this study. The results showed that 316L samples had the best corrosion resistance, although micropits were observed on the surface, while Ti6Al4V samples had the lowest. This corrosion behaviour of sintered 316L samples can be interrelated to the existence of a passive layer on stainless steel alloys that can be attacked by chloride ions and causing localized corrosion. In general, the CR values of Ti6Al4V samples coated by 316L were between the 316L and Ti6Al4V samples. The CR values of the samples, in 0.9 wt. % NaCl, did not show significant changes with increasing time, as the CR for 316L values were around 0.003 mm/year, while for Ti6Al4V the CR values changed noticeably from 0.018 mm/year of 0 hr, to 0.015 mm/year for 24 hours. However, the changes were less than that of Ti6Al4V. For 3.5 wt. % NaCl solution, although the same order of CR remained, i.e., the CR values of coated Ti6Al4V samples were between 316L (lowest) and Ti6Al4V (highest), the overall CR values for the samples were higher than 0.9 wt. % NaCl.
Rocznik
Strony
5--15
Opis fizyczny
Bibliogr. 33 poz., tab., il., wykr.
Twórcy
autor
  • Metallurgical and Materials Engineering, Kocaeli University, Kocaeli, Turkey
autor
  • Semilab Semiconductor Physics Laboratory Co. Ltd., Budapest, Hungary
autor
  • Department of Mechanical Engineering, Faculty of Technology, University A/Mira Bejaia, Algeria
autor
  • School of Information Technologies and Intelligent Systems, D. Serikbayev East Kazakhstan Technical University, Kazakhstan
autor
  • School of Engineering and Sustainable Development, De Montfort University, LE1 9BH, Leicester, United Kingdom
Bibliografia
  • 1. Yamanoglu R., Khoshnaw F., Daoud I., Efendi E.: Effect of Silver Content on Wear and Mechanical Properties of Powder Metallurgical Ti-5Al-2.5Fe-xAg Alloys. J. Min. Metall. Sect. B-Metall 56 (1) (2020) 119-125.
  • 2. Hou J., Chi F., Cui G., Chen W., Zhang W.: Strengthening effects of in-situ synthetic nano-TiC particles on Ti64 based nanocomposites through adding graphene nanoplatelets. Vacuum 177 (2020) 109-431.
  • 3. Duraiselvam M., Valarmathi A., Shariff S.M., Padmanabham G.: Laser surface nitrided Ti-6Al-4V for lightweight automobile disk brake rotor application. Wear 309 (1-2) (2014) 269-274.
  • 4. Huang G., Lu W., Li H., Sun X., Zhang D.: Reinforcements stimulated dynamic recrystallization behavior and tensile properties of extruded (TiB þ TiC þ La2O3)/Ti6Al4V composites. J. Alloys Compd. 699 (2017) 874-881.
  • 5. Ataee A., Li Y., Wen C.: A comparative study on the nanoindentationbehavior, wear resistance and in vitro biocompatibility of SLM manufactured CP–Ti and EBM manufactured Ti64 gyroidscaffolds. Acta Biomater. 97 (2019) 587-596.
  • 6. Gepreel M. A-H., Niinomi M.: Biocompatibility of Ti alloys for long term implantation. J. Mech. Behav. Biomed. Mater. 20 (2013) 407-415.
  • 7. Liu W, Liu S, Wang L. Surface Modification of Biomedical Titanium Alloy: Micromorphology, Microstructure Evolution and Biomedical Applications. Coatings 9 (4) (2019) 249-272.
  • 8. Alontseva D. L., Abilev M. B., Zhilkashinova A. M., Voinarovych S. G., Kyslytsia O. N., Ghassemieh E., Russakova A., Łatka L.: Оptimization of hydroxyapatite synthesis and microplasma spraying of porous coatings onto titanium implants. Adv. Mater. Sci. 18(3) (57) (2018) 79-94.
  • 9. Tortuero S., Garrido M.A., Poza P., Rodríguez J.: Evaluating the erosion resistance of Ti6Al4V coatings deposited by cold spray. Wear 454-455 (2020) 203-337.
  • 10. Yuana S., Lina N., Zoua J., Liud Z., Yue Y., Maa Y., Wanga Z., Zhaog B., Zengh Q., Tiana L., Qina L., Zhangb H., Wangc Z., Liua X., Tanga B., Wua Y.: Manipulation tribological behavior of Ti6Al4V alloy via a duplex treatment of double glow plasma surface molybdenizing-laser surface texturing (LST). J Mater. Res. Technol. 9 (3) (2020) 6360-6375.
  • 11. Gao P., Fan B., Yu X., Liu W., Wu J., Shi L., Yang D., Tan L., Wan P., Hao Y., Li S., Hou W., Yang K., Lia X., Guo Z.: Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopaedic application. Bioact. Mater. 5 (2020) 680-693.
  • 12. Jemat A., Ghazali M.J., Razali M., Otsuka Y.: Surface modifications and their effects on titanium dental implants. BioMed. Res. Int. 2015 (2015) 791-725.
  • 13. Hou J., Chi F., Cui G., Chen W., Zhang W.: Strengtheningeffects of in-situ synthetic nano-TiC particles on Ti64 based nanocomposites through adding graphene nanoplatelets. Vacuum 177 (2020) 109-431.
  • 14. Luan J.H., Jiao Z.B., Chen G., Liu C.T.: Improved ductility and oxidation resistance of cast Ti–6Al–4V alloys by microalloying. J. Alloys Compd. 602 (2014) 235-240.
  • 15. Brończyk A., Kowalewski P., Samoraj M.: Tribocorrosion behaviour of Ti6Al4V and AISI 316L in simulated normal and inflammatory conditions. Wear 434-435 (2019) 202-966.
  • 16. Sonekar M. M., Rathod W. S.: An experimental investigation on tribologial behavior of bio-implant material (SS-316 l & Ti6Al4V) for orthopaedic applications. Mater. Today-Proc. 19 (2) (2019) 444-447.
  • 17. Yamanoglu R., Khoshnaw F., Kolayli F., Uzuner H.: Antibacterial Properties of Stainless Steel Coated on Ti6Al4V Alloy. Int. J. Mech.Prod. Eng. 7 (9) (2019) 2321-2071.
  • 18. Eliaz N.: Corrosion of Metallic Biomaterials: A Review. Materials, 12 (3) (2019) 407.
  • 19. Obota I. B., Onyeachu I. B., Zeino A., and Umoren S. A.: Electrochemical noise (EN) technique: review of recent practical applications to corrosion electrochemistry research, J. Adhes. Sci. Technol., 33, (13) (2019) 1453–1496.
  • 20. Ibrahim M.A.M., Abd El Rehim S.S., Hamza M.M.: Corrosion behavior of some austenitic stainless steels in chloride environments. Mater. Chem. Phys. 115 (2009) 80-85.
  • 21. Sedriks J.: Corrosion of Stainless Steels. J. Willey& Sons 2nd [ed.], Inc, New York, 1996.
  • 22. Fossati A., Borgioli F., Galvanetto E., Bacci T.: Corrosion resistance properties of glow-discharge nitrided AISI 316L austenitic stainless steel in NaCl solutions. Corros. Sci 48 (6) (2006) 1513-1527.
  • 23. Yang Q., Luo J.L.: Effects of hydrogen and tensile stress on the breakdown of passive films on type 304 stainless steel. Electrochim. Acta 46 (6) (2001) 851-859.
  • 24. Phanis S.V., Satpati A.K., Muthe K.P., Vyas J.C., Sundaresan R.I.: Comparison of rolled and heat treated SS304 in chloride solution using electrochemical and XPS techniques. Corros. Sci. 43 (11) (2003) 2467- 2483.
  • 25. Ameer M.A., Fekry A.M., Heakal F.E.T.: Electrochemical behaviour of passive films on molybdenum-containing austenitic stainless steels in aqueous solutions. Electrochim. Acta 50 (1) (2004) 43-49.
  • 26. El-egamy S.S., Badway W.A.: Passivity and passivity breakdown of 304 stainless steel in alkaline sodium sulphate solutions. J. Appl. Electrochem. 34 (11) (2004) 1153-1158.
  • 27. Tsuchiya H., Fujimoto S., Chihara O., Shibata T.: Semi conductive behavior of passive films formed on pure Cr and Fe–Cr alloys in sulfuric acid solution. Electrochimica Acta 47 (2002) 4357-4366.
  • 28. Hastuty S., Nishikata A., Tsuru T.: Pitting corrosion of type 430 stainless steel under chloride solution droplet. Corros. Sci. 52 (2010) 2035-2043.
  • 29. Vora, H.D.; Rajamure R.S., Dahotre S.N., Ho, Y.-H., Banerjee R.; Dahotre N.B.: Integrated experimental and theoretical approach for corrosion and wear evaluation of laser surface nitrided, Ti–6Al–4V biomaterial in physiological solution. J. Mech. Behav. Biomed. Mater. 37 (2014) 153–164.
  • 30. Nicholson J.W.: Titanium Alloys for Dental Implants: A Review. Prosthesis 2 (2020) 100–116.
  • 31. Yu F., Addison O., Davenport A.: A synergistic effect of albumin and H2O2 accelerates corrosion of Ti6Al4V. Acta Biomater. 26 (2015) 355–365.
  • 32. Apostu D., Lucaciu O., Lucaciu G.D.O., Crisan, B., Crisan L., Baciut M., Onisor F., Baciut G., Câmpian R.S., Bran S.: Systemic drugs that influence titanium implant osseointegration. Drug Metab. Rev. 49 (2017) 92–104.
  • 33. John, A.A., Jaganathan S.K., Supriyanto E., Manikandan A.: Surface modification of titanium and its alloys for the enhancement of osseointegration in orthopaedics. Curr. Sci. 111 (2016) 1003–1015.
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
2. This is part of the Further Funded VC2020 project funded by De Montfort University - DMU, in the United Kingdom, to establish a research collaboration with Kocaeli University in Turkey. The research was supported by the Scientific Research Unit at Kocaeli University, also by Semilab Semiconductor Physics Laboratory Co. Ltd., in Hungary, University A/Mira Bejaia in Algeria and D. Serikbayev East Kazakhstan Technical University in Kazakhstan. The authors are grateful to DMU to support this research to build this research cooperation.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6369937d-f61a-4339-b5e7-d44c2b092ee8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.