Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The Andahua Group is a distinct cluster of typically monogenetic volcanoes located in the northernmost part of the Central Volcanic Zone in the Andes, characterized by small-volume lava domes and scoria cones. Seven volcanic clusters have been distinguished. Using satellite imagery, geological mapping, and fieldwork, we found a total of 103 lava domes, 43 scoria cones, and 3 small composite volcanoes. Most of the lava domes are monogenetic but 9 were formed by multiple eruptions. Petrogenetic models have been developed for the magma evolution of the Andahua Group. They show local crustal influence on the magmas generated, and possible controls on the magma pathway to the surface, and potential segregation. Local compositional variation of the crustal rocks is inferred to have a strong influence on the magma that ascends through the thick continental crust. Assimilation and contamination by deeply seated granitoids of the Arequipa and Paracas massifs are also inferred to play a role in the final magmatic products. Future activity with gas emissions from the Andahua Group volcanoes may cause hazardous conditions for tourists.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. 25
Opis fizyczny
Bibliogr. 99 poz., fot., rys., tab., wykr.
Twórcy
autor
- Polish Academy of Sciences, Mineral and Energy Economy Research Institute, Wybickiego 7A, 31-261 Kraków, Poland
autor
- Massey University, Volcanic Risk Solutions, School of Agriculture and Environment, Palmerston North, New Zealand
- Institute of Earth Physics and Space Science, Sopron H-9400, Hungary
- Saudi Geological Survey, Jeddah, Kingdom of Saudi Arabia
autor
- AGH University of Science and Technology, Faculty of Geo-Data Science, Geodesy and Environmental Engineering, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
- University of York, Department of Computer Science, Heslington, York YO10 5DD, Yorkshire, United Kingdom
Bibliografia
- 1. Aitcheson, S.J., Forrest, A.H., 1994. Quantification of crustal contamination in open magmatic systems. Journal of Petrology, 35: 461-488.
- 2. Anderson, A., Greenland, L.P., 1969. Phosphorus fractionation diagrams as a quantitative indicator of crystallization differentia - tion of basaltic liquids. Geochimica et Cosmochimica Acta, 33: 493-505.
- 3. Baker, M., Wyllie, P.J., 1992. High-pressure apatite solubility in carbonate-rich liquids - implication for mantle metasomatism. Geochimica et Cosmochimica Acta, 56: 3409-3422.
- 4. Beck, S., Zandt, G., Myers, S.L., Wallace, T., Silver, P., Drake, L.P., 1996. Crustal thickness variations in the Central Andes. Geology, 24: 407-410.
- 5. Borrero, C., Murcia, H., Agustín-Flores, J., Arboleda, M.T., Giraldo, A.M., 2017. Pyroclastic deposits of San Diego Maar, central Colombia: an example of a silicic magma related monogenetic eruption in a hard substrate. Geolog ical Society Special Publications, 446: 361-374.
- 6. Botero-Gómez, L.A., Osorio, P., Murcia, H., Borrero, C., Grajales, J.A., 2018. The Villamaria-Termales Monogenetic Volcanic Field, Central Cordillera, Colombian Andes (Part I): Morphological features and temporal relationships. Boletin De Geologia,40: 85-102.
- 7. Bromley, G.R.M., Thouret, J., Schimmelpfennig, I. Mariño, J., Valdivia, D., Rademaker, K., del Pilar, V.L.S., ASTER Team, Aumaitre, G., Bourlės, D., Keddadouche, K., 2019. In situ cosmogenic 3He and 36Cl and radiocarbon dating of volcanic deposits refine the Pleistocene and Holocene eruption chronology of SW Peru. Bulletin of Volcanology, 81, 64.
- 8. Cabrera, A.P., Caffe P.J., 2009. The Cerro Morado andesites; volcanic history and eruptive styles of a mafic volcanic field from northern Puna, Argentina. Journal of South American Earth Sciences, 28: 113-131.
- 9. Cabrera, M., Thouret, J.C., 2000. Volcanismo monogenético en el sur del Perú. X Congr Peruano de Geol. Sociedad Geológica del Perú, Lima.
- 10. Caldas, J., La Torre, V., Lajo, A., Diaz, J., Umpire, L., 2001. Mapa geológico del cudrángulo de Orcopampa (actualizado) 1:100,000. INGEMMET, Peru.
- 11. Davidson, J.P., de Silva, S.L., 1995. Late Cenozoic magmatism of the Bolivian Altiplano. Contributions to Mineralogy and Petrology, 119: 387-408.
- 12. Delacour, A., Gerbe, M.Ch., Thouret, J.C., Wörner, G., Paquereau-Lebti, P., 2007. Magma evolution of Quaternary minor volcanic centres in southern Peru, Central Andes. Bulletin of Volcanology, 69: 581-608.
- 13. Delph, J.R., Ward, K.M., Zandt, G., Ducea, M.N., Beck, S.L., 2017. Imaging a magma plumbing system from MASH zone to magma reservoir. Earth and Planetary Science Letters, 457: 313-324.
- 14. De Paolo, D.J., 1981. Trace-element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth and Planetary Science Letters, 53: 189-202.
- 15. De Silva, S.L., Francis, P.W., 1991. Volcanoes of the Central Andes. Springer, Berlin, Heidelberg.
- 16. De Silva, S.L., Kay S.M., 2018. Turning up the heat: high-flux magmatism in the Central Andes. Elements, 14: 245-250.
- 17. Dewey, J., Lamb, S., 1992. Active tectonics of the Andes. Tectonophysics, 205: 79-95.
- 18. Dóniz-Páez, J., Romero-Ruiz, C., Sánchez, N., 2012. Quan titative size classification of scoria cones: the case of Tenerife (Canary Islands, Spain). Physical Geography, 33: 514-535.
- 19. Eash, N.S., Sandor, J.A., 1995. Soil chronosequence and geomorphology in a semi-arid valley in the Andes of southern Peru. Geoderma, 65: 59-79.
- 20. England, P., Engdahl, R., Thatcher, W., 2004. Systematic variation in the depths of slabs beneath arc volcanoes. Geophysical Journal International, 156: 377-40.
- 21. Fink, J.H., Griffiths, R.W., 1998. Morphology, eruption rates, and rheology of lava domes: Insights from laboratory models. Journal of Geophysical Research-Solid Earth, 103 (B1): 527-545.
- 22. Fornaciai, A., Favalli, M., Karátson, D., Tarquini, S., Boschi, E., 2012. Morphometry of scoria cones, and their relation to geodynamic setting: A DEM-based analysis. Journal of Volcanology and Geothermal Research, 217-218: 56-72.
- 23. Francis, P., Oppenheimer, C. 2004. Volcanoes. Oxford University Press, Second edition.
- 24. Gałaś, A., 2011. The extent and volcanic structures of the Quaternary Andahua Group, Andes, southern Peru. Annales Societatis Geologorum Poloniae, 81: 1-19.
- 25. Gałaś, A., 2013. The characteristics of the Andahua Volcanic Group in southern Peru (in Polish with English summary). AGH University of Science and Technology Press, Dissertations, Monographs, 281.
- 26. Gałaś, A., 2014. Petrology and new data on the Geochemistry of the Andahua Volcanic Group (Central Andes, southern Peru). Journal of South American Earth Sciences, 56: 301-315.
- 27. Gałaś, A., 2016. Impact of volcanic eruptions on the environment and climatic conditions in the area of Poland (Central Europe). Earth-Science Reviews, 162: 58-64.
- 28. Gałaś, A., Gałaś, S., 2017. Conditions of development of volcanic attractions in the planned Colca and Andagua Volcanoes Geopark in Southern Peru. Conference: Public recreation and landscape protection - with hand in hand..., Department of Landscape Management FFWT, Mendel University in Brno, 1-3 may: 63-68.
- 29. Gałaś, A., Paulo, A., Gaidzik, K., Zavala, B., Kalicki, T., Churata, D., Gałaś, S., Mariño, J., 2018. Geosites and geotouristic attractions proposed for the project Geopark Colca and Volcanoes of Andagua, Peru. Geoheritage, 10: 707-729.
- 30. Gałaś, A., Majka, J., Włodek, A., 2021. Origin of andradite in the Quaternary volcanic Andahua Group, Central Volcanic Zone, Peruvian Andes. Mineralogy and Petrology, 115: 257-269.
- 31. Gerbe, M.Ch., Thouret, J.C., 2004. Role of magma mixing in the petrogenesis of tephra erupted during the 1990-98 explosive activity of Nevado Sabancaya, southern Peru. Bulletin of Volcanology, 66: 541-561.
- 32. Gill, J.B. 1981. Orogenic andesites and plate tectonics. Springer, Berlin-Heidelberg-New York.
- 33. Godoy, B., Wörner, G., Kojima S., Auguilera, F., Simnon, K. 2014. Low-presure evolution of arc magmas in thickened crust: the San Pedro-Linzor volcanic chain, Central Andes, northern Chile. Journal of South American Earth Sciences, 52: 24-42.
- 34. González, A., Fernández-Turiel, J.L., Pérez-Torrado, F.J, Aulinas, M.C., Hervé, D.G., 2011. GIS methods applied to the degradation of monogenetic volcanic fields: a case study of the Holocene volcanism of Gran Canaria (Canary Islands, Spain). Geomorphology, 134: 249-259.
- 35. Gutiérrez, F., Gioncada, A., Ferran, O.G., Lahsen, A., Mazzuoli, R., 2005. The Hudson Volcano and surrounding monogenetic centres (Chilean Patagonia): an example of volcanism associated with ridge-trench collision environment. Journal of Volcanology and Geothermal Research, 145: 207-233.
- 36. Guzmán, S.R., Petrinovic, I.A., Brod, J.A., 2006. Pleistocene mafic volcanoes in the Puna-Cordillera Oriental boundary, NW-Argentina. Journal of Volcanology and Geothermal Research, 158: 51-69.
- 37. Haag, M.B., Báez, W.A., Sommer, C.A., Arnosio, J.M., Filipovich, R.E., 2019. Geomorphology and spatial distribution of monogenetic volcanoes in the southern Puna Plateau (NW Argentina). Geomorphology, 342: 196-209.
- 38. Hawkesworth, C., Clarke, C., 1994. Partial melting in the Lower crust: new constraints on crustal contamination processes in the Central Andes. In: Tectonics of the Southern Central Andes, Structure and Evolution of an Active Continental Margin (eds. K.J. Reutter, E. Scheuber and P.J. Wigger): 93-101. Springer, Berlin.
- 39. Hopkins, J.L., Smid, E.R., Eccles, J.D., Hayes, J.L., Hayward, B.W., McGee, L.E., van Wijk, K., Wilson, T.M., Cronin, S.J., Leonard, G.S., Lindsay J.M., Németh, K., Smith I.E.M., 2020. Auckland Volcanic Field magmatism, volcanism, and hazard: a review. New Zealand Journal of Geology and Geophysics, 64: 1-22.
- 40. Huang, F., Sørensen, E.V., Holm, P.M., Zhang, Z.F., Lundstrom, C.C., 2017. U-series disequilibria of trachyandesites from minor volcanic centers in central Andes. Geochimica et Cosmochimica Acta, 215: 92-104.
- 41. Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25: 295-309.
- 42. James, D.E., 1982. A combined O, Sr, Nd and Pb isotopic and trace element study of crustal contamination in central Andean lavas. Earth and Planetary Science Letters, 57: 47-62.
- 43. James, D.E., Brooks, Ch., Cuyubamba, A., 1976. Andean Cenozoic volcanism: magma genesis in the light of strontium isotopic composition and trace element geochemistry. GSA Bulletin, 87: 592-600.
- 44. Janoušek, V., Moyen, J.-F., Martin, H., Erban, V., Farrow, C., 2015. geochemical modelling of igneous processes: Principles and recipes in R language. Bringing the power of R to a geochemical community. Springer Geochemistry, Berlin and Heidelberg.
- 45. Jensen, J.R., 1986. Introductory Digital Image Processing: A Remote Sensing Perspective. Prentice-Hall, Englewood Cliffs, New Jersey.
- 46. Kaneoka, I., Guevara, C., 1984. K-Ar determinations of late Tertiary and Quaternary Andean volcanic rocks, Southern Peru. Geochemical Journal, 18: 233-239.
- 47. Kay, S.M., Godoy, E., Kurtz, A., 2005. Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. GSA Bulletin, 117: 67-88.
- 48. Kereszturi, G., Németh, K., 2011. Shallow-seated controls on the evolution of the Upper Pliocene Kopasz-hegy nested monogenetic volcanic chain in the Western Pannonian Basin (Hungary). Geologica Carpathica, 62: 535-546.
- 49. Klerkx, J., Deutsch, S., Pichler, H., Zeil, W., 1979. Strontium isotopic and trace element data bearing on the origin of Cenozoic volcanic rocks of the Central and Southern Andes). Journal of Volcanology and Geothermal Research, 2: 49-71.
- 50. La Maitre, R.W., Bateman, P., Dudek, A., Keller, J., Lameyre, J., Le Bas, M., Sabine, P.A., Schmid, R., Sřrensen, H., Streckeisen, A., Wooley, A.R., Zanettin, B., 1989. Aclassification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications, Oxford.
- 51. Lewińska P., Gałaś, A., 2021. Use of structure-from-motion algorithms for geomorphological analyses of simple volcanic structures: A case study of Chilcayoc Chico and four other volcanoes of the Andahua Group, Peru. Journal of South American Earth Sciences, 107, https://doi.org/10.1016/j.jsames.2020.103058
- 52. Lewińska, P., Glowacki, O., Moskalik, M., Smith, W.A.P., 2021. Evaluation of structure-from-motion for analysis of small-scale glacier dynamics. Measurement, 168, https://doi.org/10.1016/ j.measurement.2020.108327
- 53. Lucassen, F., Becchioc, R., Harmond, R., Kasemanna, S., Franza, G., Trumbulle, R., Wilkef, H.G., Romere, R.L., Dulskie, P., 2001. Composition and density model of the continental crust at an active continental margin - the Central Andes between 21° and 27°S. Tectonophysics, 341: 195-223.
- 54. Maciuk, K., 2016. Different approaches in GLONASS orbit computation from broadcast ephemeris. Geodetski vestnik, 60: 437-448.
- 55. Mali, V.K., Kuiry, S.N., 2018. Assessing the accuracy of high-resolution topographic data generated using freely available packages based on SfM-MVS approach, Meas. Journal of the International Measurement Confederation, 124: 338-350.
- 56. Mamani, M., Tassara, A., Wörner, G., 2008. Composition and structural control of crustal domains in the Central Andes. Geochemistry, Geophysics, Geosystems, 9: 1-13.
- 57. Mamani, M., Wörner, G., Sempere, T., 2010. Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): Tracing crustal thickening and magma generation through time and space. GSA Bulletin, 22: 162-182.
- 58. Mattsson, H.B., Hoskuldsson, A., 2005. Eruption reconstruction, formation of flow-lobe tumuli and eruption duration in the 5900 BP Helgafell lava field (Heimaey), south Iceland. Journal of Volcanology and Geothermal Research, 147: 157-172.
- 59. Mayta, O., Barrionuevo, H., Noble, D., Petersen, U., Vidal, C., 2002. Vetas de oro nativo y telururos de oro en el sector Chipmo, distrito minero de Orcopampa, sur del Perú. XI Congreso Peruano de Geología. Boletin Sociedad Geológica del Perú, Lima.
- 60. Murcia, H., Borrero, C., Németh, K., 2019. Overview and plumbing system implications of monogenetic volcanism in the northernmost Andes' volcanic province. Journal of Volcanology and Geothermal Research, 383: 77-87.
- 61. Németh, K., Haller, M.J., Martin, U., Risso, C., Massaferro, G., 2008. Morphology of lava tumuli from Mendoza (Argentina), Patagonia (Argentina), and Al-Haruj (Libya). Zeitschrift für Geomorphologie, 52: 181-194.
- 62. Niipele, J.N., Chen, J., 2019. The use fulness of ALOS-PALSAR DEM data for drainage extraction in semi-arid environments in the Iishana sub-basin. Journal of Hydrology: Regional Stud ies Volume, 21: 57-67.
- 63. Park, H., Lee, D., 2019. Comparison between point cloud and mesh models using images from an unmanned aerial vehicle, Meas. Journal of the International Measurement Confederation, 138: 461-466.
- 64. Petrelli, M., Poli, G., Perugini, D., Peccerillo, A., 2005. Petrograph: a new software to visualize, model, and present geochemical data in igneous petrology. Geochemistry, Geophysics, Geosystems, 6: Q07011.
- 65. Ramos, V.A., 2008. The basement of the Central Andes: the Arequipa and related terranes. Annual Review of Earth and Planetary Sciences, 36: 289-324.
- 66. Reynolds, P., Brown, R.J., Thordarson, T., Llewellin, E.W., 2016. The architecture and shallow conduits of Laki-type pyroclastic cones: insights into a basaltic fissure eruption. Bulletin of Volcanology, 78: 36.
- 67. Ringwood, A.E., 1974. Petrological evolution of island arc systems. Journal of the Geological Society, London, 130: 183-204.
- 68. Rogers, N., Hawkesworth, C., 2000. Composition of magmas. In: Encyclopedia of Volcanoes (eds. H. Sigurdsson, B.F. Houghton, S.R. McNutt, H. Rymer and J. Stix): 115-131. Academic Press, San Diego.
- 69. Rollinson, H.R., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical. Romanyuk, T.V., 2009. The Late Cenozoic geodynamic evolution of the central segment of the Andean subduction zone. Geotectonics, 43: 305-323.
- 70. Ruprecht, P., Wörner, G., 2007. Variable regimes in magma systems documented in plagioclase zoning patterns: El Misti stratovolcano and Andahua monogenetic cones. Journal of Volcanology and Geothermal Research, 165: 142-162.
- 71. Salas, P.A., Rabbia, O.M., Hernández, L.B., Ruprecht, P., 2017. Mafic monogenetic vents at the Descabezado Grande volcanic field (35.5oS-70.8oW): the northernmost evi dence of regional primitive volcanism in the Southern Volcanic Zone of Chile. International Journal of Earth Sciences, 106: 1107-1121.
- 72. Samaniego, P., Rivera, M., Mariño, J., Guillou, H., Liorzou, C., Zerathe, S., Delgado, R., Valderrama, P., Scao, V., 2016. The eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru). Journal of Volcanology and Geothermal Research, 323: 110-128.
- 73. Sánchez-Torres, L., Toro, A., Murcia, H., Borrero, C., Delgado, R., Gómez-Arango, J., 2019. El Escondido tuff cone (38ka): a hidden history of monogenetic eruptions in the northernmost volcanic chain in the Colombia Andes. Bulletin of Volcanology, 81: 71.
- 74. Sánchez-Torres, L., Murcia, H., Schonwalder-Ángel, D., 2022. The northernmost volcanoes in South America (5-6°N): the potentially active Samaná Monogenetic Volcanic Field. Frontiers in Earth Science, 943: 23.
- 75. Schiano, P., Monzier, M., Eissen, J.-P., Martin, H., Koga, K.T., 2010. Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160: 297-312.
- 76. Sébrier, M., Soler, P., 1991. Tectonics and magmatism in the Peruvian Andes from late Oligocene time to Present. GSA Special Papers, 265: 259-278.
- 77. Smoll, F.L., Morche, W., Nunez, J.S., 1997. Inventario de volcanes del Peru. INGEMMET Lima, Boletin, 15.
- 78. Somoza, R., 1998. Update Nazca (Farallon) - South America relative motions during the last 40 Ma: implications for the mountain building in the Central Andean region. Journal of South American Earth Sciences, 11: 211-215.
- 79. Sñrensen, E.V., Holm, P.M., 2008. Petrological inferences on the evolution of magmas erupted in the Andagua Valley, Peru (Central Volcanic Zone). Journal of Volcanology and Geothermal Research, 177: 378-396.
- 80. Stern, C.R., 2004. Active Andean volcanism: its geologic and tectonic setting. Revista Geologica de Chile, 31: 161-206.
- 81. Störmer, J.-C., Nicholls, J., 1978. Xlfrac: a program for the interactive testing of magmatic differentiation models. Computers and Geosciences, 4: 143-159.
- 82. Sun, S.S., Mc Donough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publications, 42: 313-345.
- 83. Swanson, E., Noble, D., Connors, K., Mayta, O., Mckee, E., Sánchez, A., Heizler, M., 2004. Mapa geológico del cuadrángulo de Orcopampa (Sur del Perú). INGEMMET Lima, Boletín, Serie A: Carta Geológica Nacional, 137.
- 84. Tadono, T., Ishida, H., Oda, F., Naito, S. , Minakawa, K., Iwamoto, H., 2014. “Precise global DEM generation by ALOS PRISM,” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial In formation Sciences, Volume II-4, 2014, ISPRS Technical Commission IV Symposium, 14-16 May, 2014, Suzhou, China, URL: http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-4/71/2014/isprsannals-II-4-71-2014.pdf
- 85. Tepley, F.J, de Silva, S., Salas, G., 2013, Magma dynamics and petrological evolution leading to the VEI 5 2000 BP eruption of El Misti volcano, southern Peru. Journal of Petrology, 54: 2033-2065.
- 86. Thordarson, Th., Self, S., Oskarsson, N., Hulsebosch, T., 1996. Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783-1784 AD Laki (Skaftár Fires) eruption in Iceland. Bulletin Volcanology, 58: 205-225.
- 87. Thorpe, R.S., Francis, P.W., 1979. Variations in Andean andesite compositions and their petrogenetic significance. Tectonophysics,57: 53-70.
- 88. Thorpe, R.S., Francis, P.W., O'Callaghan, L., 1984. Relative roles of source composition, fractional crystallization and crustal contamination in the petrogenesis of Andean volcanic rocks. Philosophical Transactions of the Royal Society of London, 310: 675-692.
- 89. Thouret, J.C., Jicha, B.R., Paquette, J.L., Cubukcu, E.H., 2016. A 25 myr chronostratigraphy of ignimbrites in south Peru: implications for the volcanic history of the Central Andes. Journal of Geological Society, 173: 734-756.
- 90. Tortini, R., van Manen, S.M., Parkes, B.R.B., Carn, S.A., 2017. The impact of persistent volcanic degassing on vegetation: A case study at Turrialba volcano, Costa Rica. International Journal of Applied Earth Observation and Geoinformation, 59: 92-103.
- 91. Trumbull, R.B., Wittenbrink, R., Hahne, K., Emmermann, R., Büsch, W., Gerstenberger, H., Siebel, W., 1999. Evidence for late Miocene to Recent contamination of arc andesites by crustal melts in the Chilean Andes (25-26°S) and its geodynamic implications. Journal of South American Earth Sciences, 12: 135-155.
- 92. Ureta, G., Németh, K., Aguilera, F., Kósik, S., 2019. Cinder cones of the Quaternary Ollagüe Volcanic Field, Central Andean Volcanic Zone, northern Chile. IAVCEI - 5th International Volcano Geology Workshop Palmerston North, New Zealand, 2019, abstract.
- 93. Ureta, G., Németh, K., Aguilera, F., González, R., 2020. Features That favor the prediction of the emplacement location of maar volcanoes: a case study in the Central Andes, Northern Chile. Geosciences, 10.
- 94. Wessling, R.B., 1999. The SRTM Mission: A World-Wide 30 m Resolution DEM from SAR in 11 days, Photogrammetric week '99, https://phowo.ifp.uni-stuttgart.de/publications/phowo99
- 95. Wilson, B.M., 1989. Igneous Petrogenesis a Global Tectonic Approach. Springer.
- 96. Wörner, G., Mamani, M., Blum-Oeste, M., 2018. Magmatism in the Central Andes. Elements, 14: 237-244.
- 97. Vespermann, D., Schmincke, H.-U., 2000. Scoria cones and tuff rings. In: Encyclopedia of Volcanoes (eds. H. Sigurdsson, B.F. Houghton, S.R. McNutt, H. Rymer and J. Stix): 683-694. Academic Press, San Diego.
- 98. Yuan, X., Sobolev, S.V., Kind, R., 2002. Moho topography in the Central Andes and its geodynamic implication. Earth and Planetary Science Letters, 199: 389-402.
- 99. Zavala, B., Churata, D., 2016. Colca y Volcanes de Andagua Geopark, Arequipa, Perú: application dossier for nomination as geopark. Geological Heritage, Document process for UNESCO Global Geoparks aspiring, information prepared by INGEMMET. PALSAR_Radiometric_Terrain_Corrected_high_res, Alaska Satellite Facility (ASF) Distributed Active Archive Center (DAAC), doi: 10.5067/Z97HFCNKR6VA
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63679566-1c7c-4ab4-a66a-8726a22400e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.