PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of mixed boundary conditions and heterogeneity on the vibration behavior of orthotropic truncated conical shells

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the vibration behavior analysis of heterogeneous orthotropic conical shells with mixed boundary conditions. Basic equations of heterogeneous orthotropic truncated conical shells are derived using Donnell–Mushtari shell theory. Employing the separation of variables and Galerkin’s method, the expressions for frequency of heterogeneous orthotropic conical shells with two mixed boundary conditions are obtained. The results are validated through numerical comparisons with available results in the literature. The influences of truncated shell characteristics, heterogeneity, material orthotropy and mixed boundary conditions on dimensionless frequency parameters are investigated.
Rocznik
Strony
331--348
Opis fizyczny
Bibliogr. 43 poz., rys.
Twórcy
  • Department of Civil Engineering Engineering Faculty Suleyman Demirel University Isparta, Turkey
  • Department of Mechanics of Azerbaijan Architecture and Construction University Baku, Azerbaijan
autor
  • Department of Engineering Mathematics Faculty of Engineering and Natural Sciences Bahcesehir University Istanbul, Turkey
Bibliografia
  • 1. M. Koizumi, Functionally gradient materials the concept of FGM, Ceramic Transactions, 34, 3–10, 1993.
  • 2. V. Birman, L.W. Byrd, Modeling and analysis of functionally graded materials and structures, Applied Mechanics Reviews, 60, 195–215, 2007.
  • 3. H.S. Shen, Functionally graded materials, nonlinear analysis of plates and shells, Florida, CRC Press, 2009.
  • 4. E. Pan, Exact solution for functionally graded anisotropic composite laminates, Journal of Composite Materials, 37, 1903–1920, 2003.
  • 5. W.Q. Chen, Z.G. Bian, H.J. Ding, Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells, International Journal of Mechanical Sciences, 46, 159–171, 2004.
  • 6. R.C. Batra, J. Jin, Natural frequencies of a functionally graded anisotropic rectangular plate, Journal of Sound and Vibration, 282, 509–516, 2005.
  • 7. J.L. Pelletier, S.S. Vel, An exact solution for the steady–state thermoelastic response of functionally graded orthotropic cylindrical shells, International Journal of Solids and Structures, 43, 1131–1158, 2006.
  • 8. Y. Ootao, Y. Tanigawa, Three-dimensional solution for transient thermal stresses of an orthotropic functionally graded rectangular plate, Composite Structures, 80, 10–20, 2007.
  • 9. V.B. Chalivendra, Mixed-mode crack-tip stress fields for orthotropic functionally graded materials, Acta Mechanica, 204, 51–60, 2009.
  • 10. S.S. Vel, Exact elasticity solution for the vibration of functionally graded anisotropic cylindrical shells, Composite Structures, 92, 2712–2727, 2010.
  • 11. C. Baron, Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum, Ultrasonics, 51, 123–130, 2011.
  • 12. R. Lal, Y. Kumar, Characteristic orthogonal polynomials in the study of transverse vibrations of nonhomogeneous rectangular orthotropic plates of bilinearly varying thickness, Meccanica, 47, 175–193, 2012.
  • 13. A.M. Najafov, A.H. Sofiyev, N. Kuruoglu, Torsional vibration and stability of functionally graded orthotropic cylindrical shells on elastic foundations, Meccanica, 48, 829–840, 2013.
  • 14. A.H. Sofiyev, N. Kuruoglu, Buckling and vibration of shear deformable functionally graded orthotropic cylindrical shells under external pressure, Thin Walled Structures, 78, 121–130, 2014.
  • 15. R.E. Martin, Free vibrations of anisotropic conical shells, AIAA Journal, 7, 960–962, 1969.
  • 16. C.C. Yang, On vibrations of orthotropic conical shells, Journal of Sound and Vibration, 34, 552–555, 1974.
  • 17. A.A. Lakis, P.V. Dyke, H. Ouriche, Dynamic analysis of anisotropic fluid-filled conical shells, Journal of Fluids and Structures, 6, 135–162, 1992.
  • 18. L. Tong, Free vibration of orthotropic conical shells, International Journal of Engineering Science, 31, 719–733, 1993.
  • 19. L. Hua, K.Y. Lam, Orthotropic influence on frequency characteristics of a rotating composite laminated conical shell by the generalized differential quadrature method, International Journal of Solids and Structures, 38, 3995–4015, 2001.
  • 20. T.Y. Ng, H. Li, K.Y. Lam, Generalized differential quadrature for free vibration of rotating composite laminated conical shell with various boundary conditions, International Journal of Mechanical Sciences, 45, 567–587, 2003.
  • 21. X.H. Wang, D. Redekop, Natural frequencies and mode shapes of an orthotropic thin shell of revolution, Thin Walled Structures, 43, 735–750, 2005.
  • 22. O. Civalek, Numerical analysis of free vibrations of laminated composite conical and cylindrical shells: discrete singular convolution (DSC) approach, Journal of Applied and Computational Mathematics, 205, 251–271, 2007.
  • 23. B. Liu, Y.F. Xing, M.S. Qatu, A.J.M. Ferreira, Exact characteristic equations for free vibrations of thin orthotropic circular cylindrical shells, Composite Structures, 94, 484–493, 2012.
  • 24. K.K. Viswanathan, J.H. Lee, Z.A. Aziz, I. Hossain, W. Rongqiao, H.Y. Abdullah, Vibration analysis of cross-ply laminated truncated conical shells using a spline method, Journal of Engineering Mathematics, 76, 139–156, 2012.
  • 25. G. Jin, Z. Su, T. Ye, X. Jia, Three-dimensional vibration analysis of isotropic and orthotropic conical shells with elastic boundary restraints, International Journal of Mechanical Sciences, 89, 207–221, 2014.
  • 26. M.A. Kouchakzadeh, M. Shakouri, Free vibration analysis of joined cross-ply laminated conical shells, International Journal of Mechanical Sciences, 78, 118–125, 2014.
  • 27. Z.J.G.N. Prado, A.L.D.P. Argenta, F.M.A. Silva, P.B. Gonçalves, The effect of material and geometry on the non-linear vibrations of orthotropic circular cylindrical shells, International Journal of Non-Linear Mechanics, 66, 75–86, 2014.
  • 28. X. Xiang, J. Guoyong, L. Wanyou, L. Zhigang, A numerical solution for vibration analysis of composite laminated conical, cylindrical shell and annular plate structures, Composite Structures, 111, 20–30, 2014.
  • 29. A.H. Sofiyev, M.H. Omurtag, E. Schnack, The vibration and stability of orthotropic conical shells with non-homogeneous material properties under a hydrostatic pressure, Journal of Sound and Vibration, 319, 963–983, 2009.
  • 30. A.H. Sofiyev, N. Kuruoglu, H.M. Halilov, The vibration and stability of nonhomogeneous orthotropic conical shells with clamped edges subjected to uniform external pressures, Applied Mathematical Modelling, 34, 1807–1822, 2010.
  • 31. Y.M. Grigorenko, A.Y. Grigorenko, Static and dynamic problems for anisotropic inhomogeneous shells with variable parameters and their numerical solution (review), International Applied Mechanics, 49, 123–193, 2013.
  • 32. Y. Heydarpour, M.M. Aghdam, P. Malekzadeh, Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells, Composite Structures, 117, 187–200, 2014.
  • 33. M. Shariyat, K. Asemi, Three-dimensional non-linear elasticity-based 3D cubic B-spline finite element shear buckling analysis of rectangular orthotropic FGM plates surrounded by elastic foundations, Composites Part B: Engineering, 56, 934–947, 2014.
  • 34. E. Viola, L. Rossetti, N. Fantuzzi, F. Tornabene, Static analysis of functionally graded conical shells and panels using the generalized unconstrained third-order theory coupled with the stress recovery, Composite Structures, 112, 44–65, 2014.
  • 35. A.H. Sofiyev, N. Kuruoglu, On a problem of the vibration of functionally graded conical shells with mixed boundary conditions, Composites Part B: Engineering, 70, 122–130, 2015.
  • 36. F. Tornabene, N. Fantuzzi, M. Bacciocchi, Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories, Composites Part B: Engineering, 67, 490–509, 2014.
  • 37. F. Tornabene, N. Fantuzzi, E. Viola, R.C. Batra, Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory, Composite Structures, 119, 67–89, 2015.
  • 38. L.H. Donnell, Stability of thin walled tubes under torsion, NASA Reports, 1933.
  • 39. Kh.M. Mushtari, Some generalizations of the theory of thin shells with application to the problem of the stability of elastic equilibrium, Kazan State University Press, USSR, 3, 71–150, 1938.
  • 40. M.S. Qatu, Vibration of Laminated Shells and Plates, Oxford, Elsevier, 2004.
  • 41. A.W. Leissa, Vibration of shells, NASA SP-288, 1973.
  • 42. L.G. Agenosov, A.V. Sachenkov, Stability and free vibration of thin circumferential cylindrical and conical shells with different boundary conditions, Research on the Theory of Plates and Shells, Kazan State University Press. USSR 2, 111–126, 1964 [in Russian].
  • 43. A.H. Sofiyev, S.E. Huseynov, P. Ozyigit, F.G. Isayev, The effect of mixed boundary conditions on the stability behavior of heterogeneous orthotropic truncated conical shells, Meccanica, doi:10.1007/s11012-015-0151-y (2015) [in press].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6365ff9b-941c-406a-bad3-45ebc6288b5c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.