PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The nonlinear effects in the ionospheric plasma generated by strong thunderstorms seen by DEMETER satellite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The terrestrial ionosphere is mainly a plasma region which is very sensitive to different disturbances. A wide range of plasma instabilities can develop in this region, which are often nonlinear processes and leading to the development of plasma turbulence. Turbulence plays a crucial role in the dynamics of the space plasma processes. The turbulence appears when some physical parameter exceeds a certain level. It can have place during strong thunderstorms. The ionosphere is sometimes treated as plasma physics laboratory with unique possibility to study fundamental plasma processes. The use of ionospheric satellite gives the chance to perform insitu measurements of plasma parameters during dynamic processes. For our analysis we used a set of selected data of the electric and magnetic fields variations in ELF (Extra Low Frequency 10–1250 Hz) and VLF (Very Low Frequency 100–20000 Hz) ranges originated from the French microsatellite DEMETER which was operating on the circular orbit with inclination of about 80◦ at altitude of 660km from July 2004 until December 2010. The Fourier, wavelet and bispectral analyses of these signals are given in this paper. Three wave processes have been identified during few very strong strokes. In some cases the nonlinear interactions of whistlers with the VLF signals of ground based transmitters have been registered. The character of spectra suggests the presence of Richardson’s cascade. Our conclusion is that in few cases these results are related to whistler turbulence.
Słowa kluczowe
Rocznik
Strony
277--290
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
  • Space Research Centre PAS, 00-716 Warsaw, Bartycka 18a, Poland
autor
  • Space Research Centre PAS, 00-716 Warsaw, Bartycka 18a, Poland
autor
  • Space Research Centre PAS, 00-716 Warsaw, Bartycka 18a, Poland
Bibliografia
  • 1. J.J. Berthelier, M. Godefroy, F. Leblanc, M. Malingre, M. Menvielle, D. Lagoutte, J.Y. Brochot, F. Colin, F. Elie, C. Legendre, P. Zamora, D. Benoist, Y. Chapuis, J. Artru, R. Pfaff, ICE-the electric field experiment on DEMETER, Planetary and Space Science, 54, 456–471, 2006.
  • 2. M. Parrot, D. Benoist, J.J. Berthelier, J. Błęcki, Y. Chapuis, F. Colin, F. Elie, P. Fergeau, D. Lagoutte, F. Lefeuvre, M. Léveque, J.L. Pinçon, H.-C. Seran, P. Zamora, The magnetic field experiment and its data processing on-board DEMETER: scientific objectives, description and first results, Planetary and Space Science, 54, 441–455, 2006.
  • 3. M. Farge, Wavelet transforms and their applications to turbulence, Annales Review Fluid Mechanics, 24, 395–457, 1992.
  • 4. G.J. MacDonald, Spectral analysis of time series generated by nonlinear processes, Reviews of Geophysics, 27, 4, 449–469, 1989.
  • 5. A.W. Wernik, High-latitude ionospheric plasma turbulence: advanced analysis methods and results, Acta Geophysica Polonica, 50, 1, 119–134, 2002.
  • 6. J. Błęcki, M. Parrot, R. Wronowski, S. Savin, Nonlinear Interactions of the Low Frequency Plasma Waves in the Middle-altitude Polar Cusp as Observed by Prognoz-8, Interball-1 and Cluster Satellites, Acta Geophysica, 55, 459–468, 2007.
  • 7. J. Błęcki, M. Parrot, R. Wronowski, ELF and VLF signatures of sprites registered onboard the low altitude satellite DEMETER, Annales Geophysicae, 27, 2599–2605, 2009.
  • 8. Y.C. Kim, E.J. Powers, Digital bispectral analysis of self-excited fluctuation spectra, Physics of Fluids, 21, 8, 1452–1453, 1978.
  • 9. D. Lagoutte, J.Y. Brochot, P. Latremoliere, SWAN Software for Waveform Analysis, Analysis Tools version 2.3, LPCE/NI/003.D – Part 1–3, 1999.
  • 10. J. Błęcki, M. Parrot, R. Wronowski, Plasma turbulence in the ionosphere prior to earthquakes, some remarks on the DEMETER registrations, Journal of Asian Earth Sciences, 41, 450–458, 2011, doi: 10.1016/j.jseaes.2010.05.016.
  • 11. D. Shaikh, Density fluctuation spectrum in whistler turbulence, Physics Letters A, 374, 2551–2554, 2010, doi: 10.1016/j.physleta.2010.04.024.
  • 12. Y. Narita, S.P. Gary, Inertial-range spectrum of whistler turbulence, Annales Geophysicae, 28, 597–601, 2010, doi: 10.5194/angeo-28-597-2010.
  • 13. Y. Narita, T.N. Parashar, J. Wang, The Gary Picture of Short-Wavelength Plasma Turbulence – The Legacy of Peter Gary, Frontiers in Physics, 10, 2022, doi: 10.3389/fphy.2022.942167.
  • 14. A. Yoshizawa, S.I. Itoh, K. Itoh, N. Yokoi, Turbulence theories and modelling of fluids and plasmas, Plasma Physics and Controlled Fusion, 43, 3, 2001, R1-R144, doi: 10.1088/0741-3335/43/3/201.
  • 15. T.F. Bell, S.C. Reising, U.S. Inan, Intense continuing currents following positive cloud-to-ground lightning associated with red sprites, Geophysical Research Letters, 25, 8, 1285–1288, 1998.
  • 16. S.C. Reising, U.S. Inan, T.F. Bell, ELF sferic energy as a proxy indicator for sprite occurrence, Geophysical Research Letters, 26, 7, 987–990, 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-636559e4-1347-4d25-b44d-18ea4c2ebf34
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.