PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Covalent immobilization of laccase on Fe3O4-graphene oxide nanocomposite for biodegradation of phenolic compounds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Laccase from Trametes Versicolor (E.C. 1.10.3.2) was immobilized on the Fe3O4–graphene hybrid nanocomposite through the covalent attachment method (Lac/Fe3O4/GO). The effect of immobilization conditions on the activity and recovered activities such as contact time, the concentration of glutaraldehyde and enzyme was evaluated. The recovered activity of the immobilized laccase on the Fe3O4–graphene oxide nanocomposite was ca. 86%. Immobilized laccase unlike free laccase retained the activity and exhibited higher resistance to temperature and pH changes and also improved storage and thermal stability. Approximately 70% of relative activity for immobilized laccase was remained after being incubated for 2 h at 55 °C, but free laccase only remained 48%. Immobilized laccase retained 88% of initial activity after storage for 20 days, however, the free laccase only 32%. Finally, Lac/Fe3O4/GO capability was evaluated by the oxidation of phenol, p-chlorophenol, and 2,4-dichlorophenol. Lac/Fe3O4/GO was characterized by SEM, EDX, FT-IR, and AGFM.
Rocznik
Strony
85--99
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Institute for Nanotechnology and Water Sustainability (iNanoWS) Unit, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, South Africa
  • UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Muckleneuk Ridge, Pretoria, South Africa, 392
  • Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape, South Africa
autor
  • UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Muckleneuk Ridge, Pretoria, South Africa, 392
  • Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape, South Africa
autor
  • State Key Laboratory of Separation Membranes and Membrane Process, National Center for International Joint Research on Membrane Science and Technology, Tianjin 300387, China
  • Institute for Nanotechnology and Water Sustainability (iNanoWS) Unit, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, South Africa
  • Institute for Nanotechnology and Water Sustainability (iNanoWS) Unit, College of Science, Engineering and Technology, University of South Africa, Johannesburg, 1709, South Africa
  • School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology, Tengeru 447, Arusha, Tanzania
Bibliografia
  • [1] SOTO A.M., JUSTICIA H., WRAY J.W., SONNENSCHEIN C., p-Nonylphenol. An estrogenic xenobiotic released from modified polystyrene, Environ. Health Perspect., 1991, 92, 167–173.
  • [2] BUSCA G., BERARDINELLI S., RESINI C., ARRIGHI L., Technologies for the removal of phenol from fluid streams: a short review of recent developments, J. Hazard. Mater., 2008, 160, 265–288.
  • [3] GIANFREDA L., SANNINO F., RAO M.A., BOLLAG J.M., Oxidative transformation of phenols in aqueous mixtures, Water Res., 2003, 37, 3205–3215.
  • [4] KO C.H., CHEN S.S., Enhanced removal of three phenols by laccase polymerization with MF/UF membranes, Biores. Techn., 2008, 99, 2293–2298.
  • [5] STANESCU M.D., FOGORASI M., SHASKOLSKIV B.L., GAVRILAS S., LOZINSKY V.I., New potential biocatalysts by laccase immobilization in PVA cryogel type carrier, Appl. Biochem. Biotechn., 2010, 160, 1947–1954.
  • [6] SAOUDI O., GHAOUAR N., BENSALAH S., OTHMAN T., Denaturation process of laccase in various media by refractive index measurements, Biochem. Biophys. Rep., 2017, 11, 19–26.
  • [7] TRAN D.N., BALKUS K.J., Perspective of recent progress in immobilization of enzymes, ACS Catal., 2011, 1, 956–968.
  • [8] SINGH R.K., TIWARI M.K., SINGH R., HAW J.R., LEE J.K., Immobilization of Larabinitol dehydrogenase on aldehyde-functionalized silicon oxide nanoparticles for Lxylulose production, Appl. Microbiol. Biotechn., 2014, 98, 1095–1104.
  • [9] GAO Z., ZHAROV I., Large pore mesoporous silica nanoparticles by templating with a nonsurfactant molecule, tannic acid, Chem. Mater., 2014, 26, 2030–2037.
  • [10] ZDARTA J., MEYER A.S., JESIONOWSKI T., PINELO M., A general overview of support materials for enzyme immobilization. Characteristics, properties, practical utility, Catalysts, 2018, 8, 92–119.
  • [11] GEIM K., NOVOSELOV K.S., The rise of graphene, Nat. Mater., 2007, 6, 183–191.
  • [12] LI J., ZHANG S., CHEN C., ZHAO G., YANG X., LI J., WANG X., Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles, ACS Appl. Mater. Interf., 2012, 4, 4991–5000.
  • [13] CHANG Q., HUANG J., DING Y., TANG H., Catalytic oxidation of phenol and 2,4-dichlorophenol by using horseradish peroxidase immobilized on graphene oxide/Fe3O4, Molecules, 2016, 21, 1044–1054.
  • [14] OZYILMAZ G., The effect of spacer arm on hydrolytic and synthetic activity of Candida rugosa lipase immobilized on silica gel, J. Mol. Catal. B, Enzym., 2009, 56, 231–236.
  • [15] ROUHANI S., ROSTAMI A., SALIMI A., POURSHIANI O., Graphene oxide/CuFe2O4 nanocomposite as a novel scaffold for the immobilization of laccase and its application as a recyclable nanobiocatalyst for the green synthesis of arylsulfonyl benzenediols, Biochem. Eng. J., 2018, 133, 1–11.
  • [16] ROUHANI S., ROSTAMI A., SALIMI A., Preparation and characterization of laccases immobilized on magnetic nanoparticles and their application as a recyclable nanobiocatalyst for the aerobic oxidation of alcohols in the presence of TEMPO, RSC Adv., 2016, 6, 26709–26718.
  • [17] HUMMERS W.S., OFFEMAN R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, 80, 1339.
  • [18] BRADFORD M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 1976, 72, 248–254.
  • [19] CHANDRIKA G.P., Crosslinking of enzymes for improved stability and performance, Cur. Opin. Biotechn., 1999, 10, 331–335.
  • [20] PATEL S.K., CHOI S.H., KANG Y.C., LEE J.K., Eco-friendly composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization, ACS Appl. Mater. Interf., 2017, 9, 2213–2222.
  • [21] MARIA-CHONG A.S., ZHAO X.S., Functionalization of SBA-15 with APTES and characterization of functionalized materials, J. Phys. Chem. B, 2003, 107, 12650–12657.
  • [22] PATILA M., KOULOUMPIS A., GOURNIS D., RUDOLF P., STAMATIS H., Laccase-functionalized graphene oxide assemblies as efficient nanobiocatalysts for oxidation reactions, Sensors, 2016, 16, 287–301.
  • [23] KUMAR S., HAQ I., PRAKASH J., RAJ A., Improved enzyme properties upon glutaraldehyde cross-linking of alginate entrapped xylanase from Bacillus licheniformis, Int. J. Biol. Macromol., 2017, 98, 24–33.
  • [24] RUSSO M.E., GIARDINA P., MARZOCCHELLA A., SALATINO P., SANNIA G., Assessment of anthraquinone- dye conversion by free and immobilized crude laccase mixtures, Enzyme Microb. Techn., 2008, 42, 521–530.
  • [25] KUNAMNENI A., PLOU F.J., BALLESTEROS A., ALCALDE M., Laccases and their applications. A patent review, Rec. Pat. Biotechn., 2008, 2, 10–24.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63596080-1aaa-4ea9-a7e1-f39dc855b484
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.