PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Model proposal for representing a deep coal mine spatial and functional structure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Underground coal mining usually requires the development of a set of underground corridors (workings). The workings fulfill many different functions. They are used for transportation, ventilation, dewatering and even escape pathways. The proposition of a formal representation of a working's structure for deep coal mining has been presented. The model was developed as a basis for the software system, support management and operational activities for longwall deep mine. The proposed solution is based on graph formalism along with its matrix representation. However, the idea of matrix representation is enhanced. Not only are the topological properties of workings structure considered, but also information about their functions and spatial characteristic. The object model was designed and implemented based upon the matrix idea.
Rocznik
Strony
171--178
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
autor
  • Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland
Bibliografia
  • 1. Aloi, G., Caliciuri, G., Fortino, G., Gravina, R., Pace, P., Russo, W., et al. (2016). Enabling IoT interoperability through opportunistic smartphone-based mobile gateways. Journal of Network and Computer Applications, 81, 74-84.
  • 2. Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787-2805.
  • 3. Cheng, B., Cheng, X., & Chen, J. (2015). Lightweight monitoring and control system for coal mine safety using REST style. ISA Transactions, 54, 229-239.
  • 4. Chen, G., & Kotz, D. (2000). A survey of context-aware mobile computing research. Technical Report TR2000-T2381. Dartmouth: Dept. of Computer Science, Dartmouth College.
  • 5. Ermolin, Y. A. (1999). Mathematical modelling for optimized control of Moscow's sewer network. Applied Mathematical Modelling, 23(7), 543-556.
  • 6. Febbraro, A. D., & Sacco, N. (2004). On modelling urban transportation networks via hybrid Petri nets. Control Engineering Practice, 12(10), 1225-1239.
  • 7. Kabiesz, J., Iwaszenko, S., & Trenczek, S. (2012). Narzędzia informatyczne do zarządzania systemami prewencji zagrożeń górniczych [Information tools for mining threats prevention systems management]. In J. Kabiesz (Ed.), Zarządzanie prewencją zagrożeń górniczych wspomagane narzędziami informatycznymi (pp. 72-90). Katowice: Central Mining Institute.
  • 8. Kim, C., & O'Grady, P. J. (1996). A representation formalism for feature-based design. Computer-aided Design, 28(6), 451-460.
  • 9. Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., & Uhlig, S. (2015). Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1), 14-76.
  • 10. Liskov, B. (1988). Keynote address-data abstraction and hierarchy. ACM Sigplan Notices, 23(5), 17-34.
  • 11. Liskov, B., & Wing, J. M. (1993). Family values: A behavioral notion of subtyping. Cambridge: DTIC Document.
  • 12. Lupton, K., & Bolsdon, D. (1999). An object-based approach to a road network definition for an accident database. Computers, Environment and Urban Systems, 23(5), 383-398.
  • 13. Martinez, P., & Skarmeta, A. (n.d.). Empowering the Internet of Things with Software Defined Networking. FP7 European Research Project on the Future Internet of Things.
  • 14. Ray, P. (2016). A survey on Internet of Things architectures. Journal of King Saud University-computer and Information Sciences (in press) https://doi.org/10.1016/j. jksuci.2016.10.003.
  • 15. Rhee, Y., & Park, S. J. (1997). Object-oriented modelling and simulation for broadband network design. Simulation Practice and Theory, 5(5), 405-424.
  • 16. Sánchez-López, C., Fernández, F. V., & Tlelo-Cuautle, E. (2010). Generalized admittance matrix models of OTRAs and COAs. Microelectronics Journal, 41(8), 502-505.
  • 17. Schilit, B., Adams, N., & Want, R. (1994). Context-aware computing applications, 8-9 December 1994. In Mobile computing systems and applications, 1994. WMCSA (pp. 85-90). Los Alamitos, CA: IEEE.
  • 18. Schmidt, A., Beigl, M., & Gellersen, H. W. (1999). There is more to context than location. Computers & Graphics, 23(6), 893-901.
  • 19. Want, R., Hopper, A., Falcao, V., & Gibbons, J. (1992). The active badge location system. ACM Transactions on Information Systems (TOIS), 10(1), 91-102.
  • 20. Xia,W.,Wen, Y., Foh, C. H., Niyato, D., & Xie, H. (2015). A survey on software-defined networking. IEEE Communications Surveys & Tutorials, 17(1), 27-51.
  • 21. Xue, X., Chang, J., & Liu, Z. (2014). Context-aware intelligent service system for coal mine industry. Computers in Industry, 65(2), 291-305.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6355ee93-890a-4c5b-b1f1-9334de677824
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.