PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Towards high sensitivity and high-resolution PET scanners: imaging-guided proton therapy and total body imaging

Autorzy
Identyfikatory
Warianty tytułu
Konferencja
4th Jagiellonian Symposium on Advances in Particle Physics and Medicine, Krakow, 10-15 July 2022
Języki publikacji
EN
Abstrakty
EN
Quantitative imaging (i.e., providing not just an image but also the related data) guidance in proton radiation therapy to achieve and monitor the precision of planned radiation energy deposition field in-vivo (a.k.a. proton range verification) is one of the most underinvested aspects of radiation cancer treatment despite that it may dramatically enhance the treatment accuracy and lower the exposure related toxicity improving the entire outcome of cancer therapy. In this article, we briefly describe the effort of the TPPT Consortium (a collaborative effort of groups from the University of Texas and Portugal) on building a time-of-flight positronemission-tomography (PET) scanner to be used in preclinical studies for proton therapy at MD Anderson Proton Center in Houston. We also discuss some related ideas towards improving and expanding the use of PET detectors, including the total body imaging.
Rocznik
Strony
96--106
Opis fizyczny
Bibliogr. 67 poz., rys.
Twórcy
autor
  • Department of Physics, University of Texas at Austin, Austin TX 78712, USA
Bibliografia
  • [1] Wilson RR. Radiological use of fast protons, Radiology 47, 487-491 (1946) doi:10.1148/47.5.487.
  • [2] An informative website on particle (a.k.a. proton or ion) therapy is maintained by a Particle Therapy Co-Operative (PTCOG) Group at https://www.ptcog.ch/index.php/.
  • [3] Jermann M. Particle Therapy Statistics in 2014. Int J Particle Ther. 2015;2(1):50-54.
  • [4] Many excellent references can be found at https://www.ptcog.ch/index.php/particletherapy literature.
  • [5] A website of the National Association for Proton Therapy https://www.proton-therapy.org/blog/category/press-releases/.
  • [6] A “white paper" of proton therapy is disseminated by a commercial enterprise PROTOM at https://info.protominternational.com/proton-therapy-white-paper.
  • [7] Levin WP, Kooy H, Loeffler JS, D eLaney TF. Proton Beam Therapy. Br J Cancer. 93(8): 849-854 (October 2005). doi: 10.1038/sj.bjc.6602754.
  • [8] Lomax AJ, Bortfeld T, Goitein G, Debus J, Dykstra C et al. A treatment planning inter-comparison of proton and intensity modulated photon radiotherapy, Radiotherapy and Oncology, Volume 51, Issue 3, 1 June 1999, Pages.257-271, DOI:https://doi.org/10.1016/S0167-8140(99)00036-5.
  • [9] Foote RL, Stafford SL, Petersen IA, et. al. The clinical case for proton beam therapy. Radiation Oncology. 7, 174 (2012). doi: 10.1186/1748-717X-7-174.
  • [10] Durante M. Orecchia R & Loeffler J. Charged-parti cle therapy in cancer: clinical uses and future perspectives. Nat Rev Clin Oncol 14, 483-495 (2017). https://doi.org/10.1038/nrclinonc.2017.30.
  • [11] Durante M, Debus J & Loeffler JS. Physics and biomedical challenges of cancer therapy with accelerated heavy ions. Nat Rev Phys 3, 777-790 (2021). https://doi.org/10.1038/s42254-021-00368-5.
  • [12] Moreno AC, Frank SJ, Garden AS, Rosenthal DI, Fuller CD et al. Intensity modulated proton therapy (IMPT) - The future of IMRT for head and neck cancer. Oral Oncol.2019 Jan; 88:66-74. doi: 10.1016/j.oraloncology.2018.11.015. Epub 2018 Nov 21. PMID:30616799; PMCID: PMC6615027.
  • [13] MacKay RI. Image guidance for proton therapy. Clin Oncol (R Coll Radiol). 2018; 30(5):293-8.
  • [14] Landry G, Hua CH. Current state and future applications of radiological image guidancefor particle therapy. Med Phys. 2018; 45(11):e1086-95.
  • [15] Hoffmann A, Oborn B, Moteabbed M, Yan S, Bortfeld T et al. MR-guided proton therapy: a review and a preview, Radiation Oncology (2020) 15:129, https://doi.org/10.1186/s13014-020-01571-x.
  • [16] Zhu X, Fakhri GE. Proton Therapy Verification with PET Imaging, Theranostics 2013; 3(10):731-740. https://doi.org/10.7150/thno.5162.
  • [17] Grogg K, Alpert NM, Zhu X, Min CH, Testa M et al. Mapping O-15 Production Rate for Proton Therapy Verification, Int J Radiation Oncol Biol Phys, Vol. 92, No. 2, pp. 453-459, 2015.
  • [18] Cho J, Grogg K, Min CH, Zhu X, Paganetti H et al. Feasibility study of using fall-off gradients of early and late PET scans for proton range verification, Med Phys. 2017 May ; 44(5): 1734-1746. doi:10.1002/mp.12191.
  • [19] Krishnamoorthy S, Teo BK, Zou W, McDonough J, Karp JS and Surti S. A Proof-of -Concept Study of an In-Situ Partial-Ring Time-of -Flight PET Scanner for Proton Beam Veri_cation, IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 5, NO. 5, SEPTEMBER 2021.
  • [20] Parodi K. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring, Medical Physics 42, 7153 (2015); doi: 10.1118/1.4935869.
  • [21] Enghardt W, Crespo P, Fiedler F, Hinz R, Parodi K et al. Charged hadron tumor therapy monitoring by means of PET, Nuclear Instruments and Methods in Physics Research A 525 (2004) 284-288.
  • [22] Systematic analysis of biological and physical limitatios of proton beam range verification with offline PET/CT scans, Phys. Med. Biol. 54 (2009) 4477-4495; doi:10.1088/0031-9155/54/14/008.
  • [23] Durante M and Parodi K. Radioactive Beams in Particle Therapy: Past, Present, and Future, Front. Phys., 28 August 2020 | https://doi.org/10.3389/fphy.2020.00326.
  • [24] Battistoni G, Bauer J, Boehlen TT, Cerutti F, Chin MPW et al. The FLUKA Code: An Accurate Simulation Tool for Particle Therapy, Front. Oncol., 11 May 2016, https://doi.org/10.3389/fonc.2016.00116.
  • [25] Seco J, Spadea MF. Imaging in particle therapy: State of the art and future perspective, Acta Oncologica 54 (9) 1254-1258 (2015).
  • [26] Shusharina N, Fullerton B, Adams JA, Sharp GC, Chan AW. Impact of aeration change and beam arrangement on the robustness of proton plans, J Appl Clin Med Phys 2019; 20:3: 14-21, DOI: 10.1002/acm2.12503.
  • [27] Verburg, JM, SecoJ. Proton range verification through prompt gamma-ray spectroscopy, Physics in Medicine and Biology, 59(23), 7089{7106 (2014).
  • [28] Seco J, Clasie B, Partridge M. Review on the characteristics of radiation detectors for dosimetry and imaging, Physics in Medicine and Biology, 59(20), R303{R347; https://doi.org/10.1088/0031-9155/59/20/R303 (2014).
  • [29] Statistics adapted from the American Cancer Society's publication, Cancer Facts & Figures 2021, the ACS website, the CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2013-2017, published October 2020, and the National Cancer Institute website (sources accessed January 2021).
  • [30] Parodi K, Enghardt W and Haberer T. 2002 In-beam PET measurements of radioactivity induced by proton beams, Phys. Med. Biol. 47 21-36.
  • [31] Richard MH and Chevallier M. Design guidelines for a double scattering. Compton camera for prompt-gamma imaging during ion beam therapy: a Monte Carlo simulation study, IEEE Trans. Nucl. Sci. 58 87-94 (2010).
  • [32] Jones KC, Nie W, Chu JCH, Turian JV, Kassaee A et al. Acoustic-based proton range verification in heterogeneous tissue: simulation studies, Phys. Med. Biol. 63 025018 (2018).
  • [33] Liu C, Li Z, Hu W, Xing L, Peng H. Range and dose verifcation in proton therapy using proton-induced positron emitters and recurrent neural networks (RNNs), Phys Med Biol. 2019 Sep 4;64(17):175009. doi: 10.1088/1361-6560/ab3564.
  • [34] TOF-PET for Proton Therapy (TPPT) - In-beam Time-of -Flight (TOF) Positron Emission Tomography (PET) for proton radiation therapy, consortium of the University of Texas at Austin (K. Lang, PI), UT MD Anderson Cancer Center (N. Sahoo, PI), and Portugal (V. Varela, PI); https://utaustinportugal.org/projects/tppt/.
  • [35] TPPT Consortium: PETSys Electronics S. A. Portugal; LIP, IST (University of Lisbon), Portugal; ICNAS, University of Coimbra, Portugal; C2TN, IST (University of Lisbon) Portugal; University of Texas at Austin, Austin, USA; UT MD Anderson Proton Therapy Center, Houston, USA, Real-ti me in-beam Positron Emission Tomography for proton-range verification in proton radiation therapy, IEEE Symposium, 2021.
  • [36] Klein K, Abouzahr F, Lang K, Layden C, Matava W. et al. Time-of -Flight PET for Proton Therapy (TPPT), poster at the 12th International Conference on Position Sensitive Detectors, University of Birmingham, Sep 12-17, 2021, and a poster at the 9th Conference on PET/MR and SPECT/MR and Total-Body PET Workshop, May 28-June 1, 2022, Isola d’Elba, Italy.
  • [37] Morbelli S, Garibotto V, Van De Giessen E, Arbi z u J , Chetelat G et al. A Cochrane review on brain 18F.FDG PET in dementia: limitations and future perspectives, European Journal of Nuclear Medicine and Molecular Imaging, September 2015, Volume 42, Issue 10, pp 1487{1491.
  • [38] Byrnes KR, Wilson CM, Brabazon F, Von Leden R, Jurgens JS et al. FDG-PET imaging in mild traumatic brain injury: a critical review, Neuroenergetics, 09 January 2014, https://doi.org/10.3389/fnene.2013.00013.
  • [39] Mettler FA, Huda W, Yoshizumi TT and Mahesh M. Effective Doses in Radiology and Diagnostic Nuclear Medicine: A Catalog, Radiology 248(1), 254-263, 2008.
  • [40] Lewellen TK. Recent developments in PET detector technology, Phys Med Biol. 2008;53:R287-317.
  • [41] Lewellen TK. The Challenge of Detector Designs for PET, AJR 2010; 195:301-309.
  • [42] Peng H and Levin CS. Recent Developments in PET Instrumentation, Current Pharmaceutical Biotechnology, 2010, 11, 555-571.
  • [43] Lee JS. Technical Advances in Current PET and Hybrid Imaging Systems, The Open Nuclear Medicine Journal, 2010, 2, 192-208.
  • [44] Moses WW. Fundamental limits of spatial resolution in PET, Nucl. Instrum. Meth Phys. Res. A 648(suppl): S236-S240 (2011).
  • [45] Vaquero JJ and Kinahan P. Positron Emission Tomography: Current Challenges and Opportunities for Technological Advances in Clinical and Preclinical Imaging Systems, Annu. Rev. Biomed. Eng. 2015 ; 17: 385-414. doi:10.1146/annurev-bioeng-071114-040723.
  • [46] Vandenberghe S, Mikhaylova E, D'Hoe E, Mollet P and Karp JS. Recent develop-ments i n ti me-of -fight PET, EJNMMI Physics (2016) 3:3; DOI 10.1186/s40658-016-0138-3.
  • [47] Walrand S, Hesse M and Jamar F. Update on novel trends in PET/CT technology and its clinical applications, Nuclear Medicine: Physics and Instrumentation, Special Feature Review Article, BrJRadiol 201;89:2016, 053.
  • [48] Del Guerra A, Belcari N and Bisogni M. Positron Emission Tomography: Its 65 years, Rivista del Nuovo Cimento Vol. 39, N. 4 2016; DOI 10.1393/ncr/i2016-10122-6.
  • [49] Jones T and Townsend D. History and future technical innovation in positron emission tomography, J. Med. Imag. 4(1), 011013 (2017), doi: 10.1117/1.JMI.4.1.011013.
  • [50] Berg E and Cherry SR. Innovations in Instrumentation for Positron Emission Tomography, Semin. Nucl. Med. 2018; 48:311-331.
  • [51] Gonzalez AJ, Sanchez F and Benlloch JM. Organ-Dedicated Molecular Imaging Systems, IEEE Transactions on Radiation and Plasma Medical Sciences, 2(5), 388-403, 2018, https://doi.org/10.1109/trpms.2018.2846745.
  • [52] Catana C and Martinos AA. Development of Dedicated Brain PET Imaging Devices -- Recent Advances and Future Perspectives, Journal of Nuclear Medicine, April 26, 2019, doi:10.2967/jnumed.118.21790.
  • [53] Faul M and Coronado V. Epidemiology of Traumatic Brain Injury. In Handbook of Clinical Neurology, 127:3{13. Elsevier, 2015.
  • [54] Corso P. Incidence and Lifetime Costs of Injuries in the United States, Injury Prevention 12, no. 4 (August 1, 2006): 212{18. doi:10.1136/ip.2005.010983.
  • [55] Layden C, Klein K, Matava W, Sadam A, Abouzahr F et al. Design and modeling of a high resolution and high sensitivity PET brain scanner with double-ended readout, Biomed. Phys. Eng. Express 8 (2022) 025011.
  • [56] Kuncic Z and Lacombe S. Nanoparticle radio-enhancement: principles, progress and application to cancer treatment, Phys Med Biol 2018 Jan 9;63(2):02TR01. doi: 10.1088/1361-6560/aa99ce.
  • [57] Moskal P, Stępień EŁ. Prospects and Clinical Perspectives of Total-Body PET Imaging Using Plastic Scintillators PET Clin. 2020 Oct;15(4):439-452. doi:10.1016/j.cpet.2020.06.009.
  • [58] Moskal P, Stępień EŁ. Positronium as a biomarker of hypoxia, Bio-Algorithms and Med-Systems 2021; 17(4): 311-319.
  • [59] Moskal P, Dulski K, Chug N, Curceanu C, Czerwiński E, Dadgar M,et al. Positronium imaging with the novel multiphoton PET scanner. Science Advances (2021) 7:eabh4394. doi:10.1126/sciadv.abh439.
  • [60] Moskal P, Gajos A, Mohammed M, Chhokar J, Chug N, Curceanu C, et al. Testing CPT symmetry in ortho-positronium decays with positronium annihilation tomography. Nature Communications (2021) 12:5658.
  • [61] Lin B, Gao F, Yang Y, Wu D, Zhang Y, Feng G, Dai T and Du X (2021), FLASH Radiotherapy: History and Future. Front. Oncol. 11:644400. doi: 10.3389/fonc.2021.644400.
  • [62] Spitz DR, Buettner GR, Petronek MS, St-Aubin JJ, Flynn RT et al. An integrated physico-chemical approach for explaining the differential impact of FLASH versus conventional dose rate irradiation on cancer and normal tissue responses, Radiotherapy and oncology, 2019, Vol.139, p.23-27.
  • [63] Maxim PG, Keall Paul, Cai J. FLASH radiotherapy: Newsflash or flash in the pan? Medical physics (Lancaster), 2019, Vol.46 (10), p.4287-4290.
  • [64] Liew H, Mein S, Tessonnier T, Abdollahi A, Debus J et al. The Impact of Sub-Millisecond Damage Fixation Kinetics on the In Vitro Sparing Effect at Ultra-High Dose Rate in UNIVERSE. Int. J. Mol. Sci. 2022, 23, 2954. https://doi.org/10.3390/ ijms23062954.
  • [65] Ros A, Barrientos L, Borja-Lloret M, Casaña JV, Muñoz E et al. New probe for the improvement of the Spatial Resolution in total-body PET (PROScRiPT), EPJ Web of Conferences 253, 09004 (2021). https://doi.org/10.1051/epjconf/202125309004.
  • [66] Majewski S. Perspectives of brain imaging with PET systems, Bio-Algorithms and Med-Systems 2021; 17(4): 269–291. https://doi.org/10.1515/bams-2021-0178.
  • [67] Bugalho P, Di Francesco A, Ferramacho AL, Leong C, Niknejad T, Oliveira L, Pacher L, Rolo M, Rivetti A, Silveira M, Silva JC, Silva R, Tavernier S, Valera J, Experimental results with TOFPET2 ASIC for time-of flight applications, Nucl. Instrum. Meth. A 912, 195-198 (2018), doi:10.1016/j.nima.2017.11.034.
Uwagi
Opublikowane przez Sciendo. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-633e31e6-3745-433e-9169-e7f3c8fe99f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.