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Abstract

Context: Machine Learning (ML) is a disruptive concept that has given rise to and gen-
erated interest in different applications in many fields of study. The purpose of Machine
Learning is to solve real-life problems by automatically learning and improving from ex-
perience without being explicitly programmed for a specific problem, but for a generic
type of problem. This article approaches the different applications of ML in a series of
econometric methods. Objective: The objective of this research is to identify the latest
applications and do a comparative study of the performance of econometric and ML mod-
els. The study aimed to find empirical evidence for the performance of ML algorithms
being superior to traditional econometric models. The Methodology of systematic map-
ping of literature has been followed to carry out this research, according to the guidelines
established by [39], and [58] that facilitate the identification of studies published about
this subject. Results: The results show, that in most cases ML outperforms econometric
models, while in other cases the best performance has been achieved by combining tradi-
tional methods and ML applications. Conclusion: inclusion and exclusions criteria have
been applied and 52 articles closely related articles have been reviewed. The conclusion
drawn from this research is that it is a field that is growing, which is something that is
well known nowadays and that there is no certainty as to the performance of ML being
always superior to that of econometric models.
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80 Marı́a E. Pérez-Pons, Javier Parra-Dominguez, Sigeru Omatu, Enrique Herrera-Viedma, Juan Manuel Corchado

1 Introduction

The concept of “Econometry”, was first intro-
duced by Pawel Ciompia at the beginning of 20th
century. After him, Jan Tinbergen, was one of the
first researchers to apply mathematics in the test-
ing of economic hypotheses [71]. Econometrics
combine elements of economics, mathematics and
statistics. The statistical methods used in economet-
ric models are specifically targeted at this domain
and therefore they are non-applicable to other statis-
tical fields [28]. The purpose of machine learning is
to solve real-life problems by automatically learn-
ing and improving from experience without being
explicitly programmed for a specific problem, but
for a generic type of problem. Thanks to global
economic interdependence, nowadays much more
information is available for predictions. These large
amounts of data require different types of methods
for optimal information processing. As shown in
Figure 1, this research comprehends the nature and
the growing interdependence of economics, mathe-
matics and computer science.

Figure 1. Fields that converge in that SMS.

Therefore, traditional economic models and ap-
plications require tools that have a greater com-
puting capacity and new forecasting methodologies
that will provide more accurate predictions. In the
field of prediction, the ML algorithms based on a
previously identified label are classified as super-
vised ML algorithms [42]. Supervised algorithms
look for functions that predict well outside the sam-
ple. Economists would denominate this as the de-
pendent variable; the one that will change depend-
ing on the changes in other variables. If the labeled
attribute does not exist, an unsupervised algorithm
is necessary for data exploration rather than the pre-
diction of results. For instance, one could try to
predict the value “y” of a company from its ob-

served characteristics “x”. Within the field of su-
pervised algorithms there are many different appli-
cations that can be employed [12], either for clas-
sification or regression. Let’s suppose we set out
to measure whether having a gym in the workplace
would improve the employees’ efficiency (where
productivity was measured as projects completed
per month in a 40 hours work week). Economists
would seek for a logical experiment that might en-
tice certain workers to use gym facilities for reasons
unrelated to their current productivity (i.e., tempo-
rary gym at the workplace). We can estimate a
model using a linear regression as shown in the Fig-
ure 1:

Yi = α +β0 +β1Xi + εi (1)

or a multiple linear regression as in equation 2:

Yi = α +β0 +∑βpXpi + εi (2)

where Yi is the outcome (the productivity of the
individuals within a year), Xi is the policy of inter-
est (in case the worker has gone to the gym), β is
the key parameter of interest (the effect of going
to the gym within the working hours), α denotes
the other parameters, and εi is an error term. Using
the same data, a ML approach would involve iden-
tifying the variables that are strictly associated with
productivity. This is due to the wide range of po-
tential indicators in the data, and the likelihood of
building a model that would predict the profitability
well, either inside or outside the sample data.

ML models have the capacity to overcome those
econometric regression models according to differ-
ent prediction rules that underlie the systems [48].
The possibilities offered by ML have led several
researchers in financial econometrics to carry out
comparative studies on the performance of ML ap-
plications against traditional models as suggested
[45]. However, the two approaches have not always
been in conflict with each other. For instance, if
just one subset of control variables is predictive, a
ML model selection approach could help target the
most relevant one. Data mining methods can also be
helpful if there are significant interaction effects, so
one is focused on predicting effects for certain in-
dividuals instead of an overall impact for the whole
population [7].
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This research work analyzes the state of the art
and identifies ML studies that are oriented to econo-
metric models. It is developed under a methodol-
ogy for the systematic mapping of literature, fol-
lowing the guidelines established by [57, 58], and
[41] for carrying out Systematic Mapping Studies
(SMS). Thanks to this type of SMS it is possible to
categorize existing studies in a specific area of re-
search through an outline and structure that indicate
how often investigations are conducted in that area.
The results of the study are represented visually on
a map [51].

The remainder of this study is organized as fol-
lows: Section 2 analyzes the state-of-the-art re-
views and the surveys performed by other authors
in the fields of econometrics and ML. Then, Sec-
tion 3 details the stages of the systematic mapping
study methodology proposed by [58]. In Section 4
the results of the report stage of the conducted sys-
tematic mapping study are outlined. In Section 5
results are analyzed in detail. Finally, the conclu-
sions from the conducted research are described in
Section 6.

2 Related Work

In recent years, many authors have presented
reviews of ML applications in econometric fields.
[48], and [3] published theoretical results that em-
phasised the range of prediction possibilities of-
fered by ML in the field of economics. Since econo-
metrics includes many applications some authors
have narrowed down the scope of their studies. For
instance, [4] highlights the main machine learning
models that are applied in econometric models, in-
cluding methods based on regression, classification,
unsupervised learning methods and matrix comple-
tion methods, other authors explore concrete ar-
eas of machine learning applications in economet-
rics, such as methods for demand estimation [6].
Moreover, others conducted an in-depth examina-
tion of the major machine learning models for time
series forecasting [1, 32] made comparative stud-
ies and conclusions derived from traditional and
machine learning applications in financial market
forecasting. Other comparative studies that have
pointed to the good performance of machine learn-
ing worked in detecting irregular patterns and mak-
ing short term forecasts using heterogeneous data

[44]. According to [58], SMS studies aim to iden-
tify principal studies in the area of interest, more
extensive definition of what a SMS is will be given
in the following Section 3. Since there are many ar-
ticles in this field, and some of them mentioned in
the previous paragraph, a SMS of the published ar-
ticles has been carried out. SMS is a methodology
that intends to standardize and to objectively review
different topics. ML algorithms and their applica-
tions are a growing field of study [67, 68] which
has many effects in the worldwide economy [23]
and therefore, the authors find it interesting to com-
bine all the information with the different applica-
tions that have been made, especially at the level of
regressions. The authors have found it interesting
to create a word cloud with all the titles collected
from the searches in order to see quickly which are
the topics on which the articles related to this topic
mainly focus. The areas covered by the real-world
ML applications in traditional econometric models
are described in Figure 2.

Figure 2. Word cloud from the titles of all the
articles collected in the review.

3 Research Methodology

To complement the definition of SMS given in
the previous section, a SMS is defined as a sec-
ondary study aimed at identifying if there are sci-
entific evidence and research contributions in a field
or specific research area. SMS allows researchers to
get an overview of the amount of scientific evidence
on the subject under investigation. Several authors
have defined procedures or guidelines for conduct-
ing a SMS [57, 58, 40]. Some of the main benefits
of a SMS are described as follows:

– Uses an objective and validated procedure to
identifying papers or relevant information in a
specific research field.

– Helps identify future lines of research arising
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from the information gaps identified in the map-
ping process.

– The emergence of new research that can be used
in future systematic literature reviews.

In the present article, the SMS methodology
and phases have been followed as proposed in the
review of [58], and [39]. The process has been orga-
nized into three phases: planning, development and
mapping report. The schema of those three phases
is presented in Figure 3 and will be described in de-
tail in the subsections that follow. All the papers
included in the review are listed in Table 9.

Figure 3. SMS methodology phases that will be
described in detail in following subsections.

3.1 Planning

For the planning of our SMS, the following
three activities have been considered: Motivation,
Objective and Research Questions. For the plan-
ning of the activities, the works of [39, 58] have
been used as reference. Those activities are de-
scribed in more detail below;

3.1.1 Motivation

The evolution and adoption of machine learn-
ing in the field of traditional econometric models
motivated this SMS. The main motivation of this
paper is the review of existing papers on the appli-
cation of machine learning techniques in traditional
econometric models, as well as the comparison of
their results. The identification of future lines of re-
search in this area is also the motivation behind this
study.

3.1.2 Objective

In recent years, it has been possible to develop
many models applied to economic problems. All
this thanks to the rapid growth of machine learn-
ing applications which has been driven by the high
demand for real-time applications in real-world sce-
narios. The objective of this research is to identify
the latest applications and do a comparative study of
the performance of econometric and machine learn-
ing models. The study aimed to find empirical ev-
idence if machine learning algorithms obtain better
results than econometric models when compared to
the same problem, or on the contrary, in this field
so far there is evidence that when machine learn-
ing and econometric models are used together is it
possible to achieve better results.

3.1.3 Research Questions

Defining research questions helps find the evi-
dence required for the study. These questions will
allow to categorize the literature published until
June 22, 2020 and to present visual maps in the re-
sults section. This SMS is based on the following
research questions:

– RQ1 - How and in which fields machine learn-
ing has been implemented as econometric model
applications?

– RQ2 - How does supervised machine learning
complement traditional econometric models?

– RQ3 - Comparing machine learning and econo-
metric models what are the most frequently ap-
plied methods, and in what study context?

3.2 Development of the Study

This Section describes the process followed to
address the SMS. First the search strategy has been
defined to obtain relevant papers. The inclusion
/ exclusion criteria have been numbered and used
to select the studies to be mapped. In this case,
a large number of articles were identified as noise
and the process has been conducted individually as
suggested by the author in [59].

3.2.1 Search Strategy

To conduct a SMS, it is important to build a
search strategy and define a search string, even
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though some authors have concluded that it not pos-
sible to prevent bias in systematic reviews [74]. To
minimize the possible bias in research, the authors
have used PICO (Population, Intervetion, Compar-
ision and Outcomes) guidelines defined by [41, 40]
and applied in [58]. PICO was recently referred to
as a good set of practical guidelines for conducting
SMS [20]. The authors of [59] proposed the PICOC
model which has been developed within the PICO
framework and its Context has been extended. Nev-
ertheless, in this case, only the PICO framework has
been used.

– Population: The identified papers.

– Intervention: The methods implementing ma-
chine learning and traditional econometrics.

– Comparison: The different types of results are
compared.

– Outcomes: Complementarities and uses of
econometric and machine learning models

After applying the PICO approach, our key-
words are econometric and ML. To reduce the
search and obtain more accurate results, the key-
words considered in the second search were closely
related to the research Regression, and Supervised.
The selection of those databases done has been ac-
cording to the volume of articles as well as the va-
riety of publication topics, being among those se-
lected those recommended as optimal for this type
of analysis [10]. The search strings were built for
the following databases: Web of Science, Scopus
and Springer. The search was restricted to June 22,
2020. Three search strings were designed for each
database to reduce the number of articles obtained
in the preliminary results, those have been repre-
sented in Table 1. In the creation of the search
strings, due to the fact that the second condition
proved to be very restrictive, as it yielded very few
articles, it was decided to extend it a little further by
including the possibility of a new word. The num-
ber of articles per year found for each of the search
engines are those described in the Table 2.

3.2.2 Inclusion/Exclusion Criteria

Regarding the inclusion and exclusion crite-
rias, [58] pointed the importance of establishing the

characteristics that the identified studies must meet
in order to be included or excluded from a system-
atic mapping study. Using the [58] guide as a basis,
the following inclusion and exclusion criteria were
considered when selecting a paper. Those criterias
are the ones that have been described in Table 3.

3.3 Mapping Report

The mapping report includes the filtering stud-
ies and classification process descriptions. During
the filtering process, the relevance of 4 of the pa-
pers has been questioned and therefore have been
removed from the overall study. To strengthen the
criteria for the inclusion-exclusion of articles, the
support of three researchers was requested for eval-
uation by experts. Moreover, this has allowed us to
maintain neutrality and objectivity in the process of
selection and rejection of articles related to the sub-
ject of the review. The full mapping report is shown
in Table 9.

3.3.1 Filtering Studies

From the three search strings defined, a total of
356 related studies were found in the first step. To
filter all the studies, the previously defined inclu-
sion and exclusion criteria have been applied. The
filtering process was conducted by the first author.
The papers that have been selected met all the in-
clusion criteria and none of the exclusion criteria.
The first author consulted the rest of the co-authors
in cases where it was not clear whether an article
should be included or excluded. The authors have
requested support from other researchers to resolve
disagreements between them when needed.

3.3.2 Classification Process

Once the filtering process has been completed,
the selected articles were classified on a spreadsheet
into the following categories: Author, Title, Year,
Type of Publication, Machine learning vs econo-
metric, Field of application, Research Type, Evo-
lution Activity and contribution Type. The Type
of Publication is divided into; Journal, Conference
and Book Chapter. The machine learning vs econo-
metric; describes the output in terms of the perfor-
mance achieved by machine learning and the econo-
metric models, it is stated if one performed better
than the other or if they were used jointly. The
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Table 1. Search string designed for database search. The articles have been extracted directly from each
Search Engine.

Data Base Search String

Web of Science
(WS1)

((TS=(Econometric AND Machine Learning ))) AND LANGUAGE:
(English)

Web of Science
(WS2)

((TS=(Econometric AND Machine Learning AND supervised))) AND
LANGUAGE: (English)

Web of Science
(WS3)

((TS=(Econometric AND machine AND learning AND regression OR
supervised))) AND LANGUAGE: (English)

Scopus (SC1) TITLE-ABS-KEY ( ”Econometric” ) OR TITLE-ABS-KEY ( ”Machine
Learning” ) ) AND TITLE-ABS-KEY ( ”*supervised learning*” ) AND
( TITLE-ABS-KEY ( ”Econometric*” ) OR TITLE-ABS-KEY ( ”re-
gression*” ) ) AND ( LIMIT-TO ( PUBYEAR , 2020 ) OR LIMIT-TO
( PUBYEAR , 2019 ) OR LIMIT-TO ( PUBYEAR , 2018 ) OR LIMIT-
TO ( PUBYEAR , 2017 ) OR LIMIT-TO ( PUBYEAR , 2016 ) ) AND (
LIMIT-TO ( LANGUAGE , ”English” ) )

Scopus (SC2) TITLE-ABS-KEY ( ”Econometric” ) AND TITLE-ABS-KEY ( ”Ma-
chine Learning” ) ) AND TITLE-ABS-KEY ( ”supervised*” ) AND (
LIMIT-TO ( PUBYEAR , 2020 ) OR LIMIT-TO ( PUBYEAR , 2019
) OR LIMIT-TO ( PUBYEAR , 2018 ) OR LIMIT-TO ( PUBYEAR
, 2017 ) OR LIMIT-TO ( PUBYEAR , 2016 ) ) AND ( LIMIT-TO (
LANGUAGE , ”English” ) )

Scopus (SC3) TITLE-ABS-KEY ( ”Econometric” ) AND TITLE-ABS-KEY ( ”Ma-
chine Learning” ) ) AND TITLE-ABS-KEY ( ”*economet*” ) OR
TITLE-ABS-KEY ( ”supervised*” ) OR TITLE-ABS-KEY ( ”regres-
sion*” ) AND ( LIMIT-TO ( PUBYEAR , 2020 ) OR LIMIT-TO ( PUB-
YEAR , 2019 ) OR LIMIT-TO ( PUBYEAR , 2018 ) OR LIMIT-TO
( PUBYEAR , 2017 ) OR LIMIT-TO ( PUBYEAR , 2016 ) ) AND (
LIMIT-TO ( LANGUAGE , ”English” ) )

Springer (SP1) (”Econometric”) AND (”Machine Learning”)

Springer (SP2) (”Econometric”) AND (”Machine Learning”) AND (”supervised”)

Springer (SP3) (”Econometric”) AND (”Machine Learning”) AND (”supervised”) OR
(”regression”)
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Table 2. Number of articles per year under each search engine criteria. The number of articles in 2020 is
only till June 22nd 2020.

2016 2017 2018 2019 2020
SC1 89 129 212 382 162
SC2 2 1 2
SC3 9 30 28 52 19
WS1 5 12 16 29 11
WS2 2
WS3 3 6 5 15 4
SP1 129 147 227 315 355
SP2 28 26 46 80 81
SP3 15 17 35 55 63

Table 3. Inclusion and Exclusion Criterias

Inclusion Exclusion
IC1: Peer-reviewed book chapters and
papers published in journals or confer-
ences

EC1: Duplicated papers

IC2: Studies published between 2016
to June 2020

EC2: Papers that are not related to ma-
chine learning and econometric appli-
cations

IC3: Studies in the field of machine
learning applications in econometrics

EC3: The papers in which the au-
thors have not identified an economet-
ric and machine learning application
(event joint or replaceable methodolo-
gies)
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Field of application is the field to which the algo-
rithm has been applied (ie: Stock market, Agricul-
ture,...). In the Research Type category, studies are
classified into: Evaluation research, Validation re-
search, Solution proposal, Philosophical paper, Ex-
perience report, and Opinion paper. The Evolu-
tion activity allows for the classification of the ar-
ticles determining the following categories; Vali-
date, Implement or Analyse, which means if only
an analysis had been carried out in the research or
if it implemented and validated a proposed solution.
The Contribution type consists of the main contri-
bution of the article: Method, model, framework,
or platform. There is a set of articles that can con-
tain two or more research types, in those cases, a
single record containing the categories is made to
avoid the duplicity of the data. The classifications
and categories are being presented according to the
classification described by [39].

4 Mapping

For each of the databases: Springer, Scopus,
and Web of Science, a first simple search string was
defined using only machine learning and economet-
rics as keywords, and 2884 papers appeared in the
search results. For this reason, the authors decided
to extend the search string by increasing the number
of keywords, with a second search string detailed
in Table 1. The total number of article results was
268, nevertheless, the results were too strict and not
covering the whole expected searches. Therefore, it
was decided to expand the search string a little more
by extending the concept. The application of the
last search chain resulted in 356 papers which were
reviewed and filtered by applying the inclusion and
exclusion criteria.

That the papers were excluded if they did
not meet the inclusion criteria established in the
Methodology for the development of the SMS and
that have been described in the 3.2.2. The final re-
sult is the one shown in Figure 4. As can be seen in
the diagram 4, 51 articles were duplicated papers.
Then there were 111 articles that contained ma-
chine learning and econometrics but not related to
both files, and finally, 142 articles were removed be-
cause the aim of the study was to identify those pa-
pers that were comparing experiments implement-
ing machine learning and econometric models. The

final number of articles that have been selected to
conduct the research has been 48.

4.1 General Analysis

Due to the variable and extensive nature of re-
search, a graphical analysis of the fields in which
this type of research is published is given in Fig-
ure 4.1. All the articles from the first search string
have been taken so that the volume in terms of
the distribution of the publications was wide. The
scope of journals that contain most of the publica-
tions in the research field of econometric models
and machine learning are the ones in computer sci-
ence and economics. Nevertheless, there are also
publications in mathematics and engineering jour-
nals, which can be considered essential fields of
knowledge when conducting this type of research.

Figure 5. Fields of the journals where the articles
have been published. The percentages correspond

to the total sample on the first search String
created.

5 Results

The results of the systematic mapping are
shown in Figure 5. In Figure 5, three dimensions of
the previous dimensions described in Section 3.3.2
where the classification process is described have
been considered. Those dimensions are: Contribu-
tion type, ML vs econometrics, and Research type
according to the guidelines for bubble plot graphs,
defined by [57]. In the systematic mapping review,
the validation of the different models has consid-
ered the most important element of the researches,
as shown in the table. The different tables are eval-
uated in Table 4 under Method, 5 Model, and 6
Framework.
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Figure 4. Exclusion Criteria applied to the total articles extraction

Figure 6. Mapping study

5.1 RQ1 - How and in what fields ML
has been implemented as econometric
model applications?

The results derived from RQ1 are shown as a
stacked bar graph in the Figure 7. As seen in the
graph, the articles have been classified into large ac-
tivity groups into which the research articles could
be categorized. A sector of activity has been kept
as theoretical due to the fact that some articles were
very theoretical and generic in terms of activity
leading to an impossibility to adjust it to one sector
of activity or another. As can be seen in the graph,
the analysis of future performance is oriented to
all industries, while the analysis of time series is
mostly used in the stock market and investment ap-

plications. One of the issues where it is practically
a common denominator in all cases is the forecast
of future prices.

5.2 RQ2 - How does Supervised ML com-
plement traditional econometric Mod-
els?

To answer this question, 4 different hypotheses
have been presented as shown in Table 7. In Table 8
the results are shown regarding the differences in
the methods, model and framework and in the cases
where the machine learning techniques or econo-
metric models outperform one another. In the ma-
jority of the cases where machine learning and tra-
ditional econometric models were compared, ma-
chine learning has performed better in making pre-
dictions. There are some situations where the high-
est accuracy is achieved by using the algorithms
jointly, as presented in Table 8. This Table shows
that in cases where a new model is proposed, the
highest accuracy is achieved when the models are
combined, indicating that machine learning mod-
els or econometric models do not necessarily work
better than each other but that the synergy between
both is usually the best option due to the nature of
both models. This classification should be placed in
the framework of considering that this SMS consid-
ers articles from 2016, in which machine learning
was already an established field.
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Table 4. Articles with Contribution type classified as “Method”. ANN: Artificial Neural Network,
ARIMA: Autoregressive integrated moving average, D-ML: Diverse ML Methods, LR: Linear Regression,

MLR: Multinomial logistic regression, NN: Neural Network, RF: Random Forest, SARIMA: Seasonal
Autoregressive Integrated Moving Average, SCL: Supervised Classification algorithms, SVR: Support

Vector Regression, SVM: Support Vector Machine, TS: Time Series

Author ML vs Eco ML Algo-
rithms

Econometric
models

Topic Output

[17] Eco Outperforms RF MLR Agriculture Future Demand
[31] ML Outperforms RF/NN ARIMA Energy Future Price
[29] ML Outperforms ANN SARIMA Energy Future Price
[56] ML outperforms ML Regression Tourism Future performance
[14] ML Outperforms ANN LR Agriculture Future Performance
[62] Used Jointly ANN ARIMA Energy Price Time Series
[29] Non Results ANN ARIMA Citizien Future Performance
[38] Used Jointly SCL LDA Health Future Performance
[5] Non Results SVR/NN ARIMA Theorical Future Performance
[75] Non Results SVM Theorical Theorical Future Performance
[36] Non Results NN TS Citizienship Future Performance

Table 5. Articles with Contribution type classified as “Model”. ARIMA: Autoregressive integrated moving
average, DL: Deep Learning, DNN: Deconvolutional Neural Network, D-ML: Diverse ML Methods, FE
-R: Fixed Effect Regression, GA: Genetic Algorithm, GARCH: Generalized AutoRegressive Conditional
Heteroskedasticity, KNN: k-nearest neighbors algorithm, LASSO: east absolute shrinkage and selection

operator, LR: Linear Regression, NN: Neural Network, SVR: Support Vector Regression, PCA: Principal
Component Analysis, PCR: Put-call ratio, RF: Random Forest

Author ML vs Eco ML Algorithms Econometric
models

Topic Output

[66] ML Outperforms GA ARIMA Citizien Future Price
[21] Used Jointly SVR ARIMA Investment Time Series
[49] Used Jointly RNN GARCH Agriculture Future Performance
[33] ML Outperforms KNN,.. Regression Agriculture Future Demand
[25] Non results PCA LR Investment Future Performance
[54] Non Results GA HODRICK-

PRESCOTT
Stock Mar-
ket

Future Price

[60] Used Jointly SVR LASSO Transport Future Demand
[26] Used Jointly RF FE-R Trade Future Performance
[46] Used Jointly DL Regression Tourism Future Performance
[53] ML outperforms SVR/KNN PCR Tourism Future Price
[72] ML outperfoms AVM ML Regression investment Theorical
[22] ML outperfoms ANN Regression Tourism Future Demand
[2] ML outperfoms DNN ARIMA Investment Future Price
[27] Used Jointly SVR LASSO Transport Future price
[47] ML outperforms NN ARIMA Investment Future Price
[69] Used Jointly D-ML Regression Theorical Theorical
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Table 6. Articles with Contribution type classified as “Framework”. ANN: Artificial Neural Network,
ARIMA: Autoregressive integrated moving average, BA:Bootstrap aggregating, GARCH: Generalized

AutoRegressive Conditional Heteroskedasticity, DNL: Deep Neural Learning, DT: Decision Tree, D-ML:
Diverse ML Methods, LSTM: Long short-term memory, NLP: Natural Language Processing, NN: Neural
Network, PCA: Principal Component Analyisis, RF: Random Forest, RNN: Recurrent neural network, RT:

Regression Tree, SVM: Support Vector Machine, SVR: Support Vector Regression

Author ML vs Eco ML Algorithms Econometric
models

Topic Output

[11] ML Outperforms NA Arima Investment Future Performance
[35] Eco Outperforms SVR/NN regression Stock Mar-

ket
Future price

[44] Used jointly RT,BA Regression Film Indus-
try

Future Performance

[64] Used Jointly ANN Barndorff-
Nielsen and
Shephard

Investment Future Performance

[24] Non results RF Regression Tourism Future Performance
[76] ML outperforms NN/RF ARIMA /

Garch
Transport Future price

[52] Used Jointly NLP Regression Banking Future price
[19] Used Jointly ML DF Theorical Future performance
[13] ML outperforms PCA Regression Banking Future performance
[9] ML outperforms D-ML Multivariate

Regresison
Theorical future performance

[55] ML outperforms D-ML Regresison Insurance Future Performance
[48] Non Results D-ML Multivariate

Regresison
Theorical future performance

[37] ML outperforms D-ML Regressison theorical Future Performance
[30] Non Results D-ML ARIMA theorical Future Performance
[43] Non Results D-ML Bayesian

Methods
theorical Future Performance

[63] Non Results DNL Regresison Theorical Future Performance
[16] Non Results D-ML Regresison Theorical Future Performance
[8] Non Results D-ML Multivariate

Regresison
Theorical Future performance

[3] Non Results ML Regression Theorical Future performance
[18] Non Results RNN,LSTM Regressions Investment Future performance

Figure 7. Fields per contribution type
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Table 7. Classification according the 4 different hypotheses presented

Name Description
Used Jointly Combination of Econometric Models and ML algorithms

ML Outperforms Comparision where ML algorithms achieve better results versus Econometric Models
ECO Outperforms Comparision where Econometric Models achieve better results versus ML algorithms

No Results Non Conclusive Results

Table 8. Results in difference

Used Jointly ML Outperforms ECO Outperforms No results

Method [38], [62] [15], [31], [29], [14],
[56]

[17] [36], [5], [75]

Framework [52], [44], [64], [19] [11],[55], [37], [48],
[9], [76], [13]

[35] [3], [24], [30], [63]
[43] , [16] [18], [8]

Model [21], [70], [49], [46],
[60], [26], [27]

[66], [47],[33], [2],
[64], [53], [72], [22]

[25], [54]

5.3 RQ3 - Comparing ML and Econo-
metric Models what are the most fre-
quently applied methods, and in what
study context?

Figure 7 compared the algorithms and their ap-
plications in econometrics and machine learning. In
some cases their performances are contrasted, in
others, they are used jointly. The most research
methods are ANN and RF vs ARIMA and different
types of regression (and the different variants that it
can have).

Figure 8. Econometric and ML applications

6 Conclusions

Overall, new technologies and applications,
such as machine learning, help increase the accu-
racy of prediction algorithms. A SMS serves to
have an overview of the state of the art in the field,
this review shows that in terms of the number of
publications, this field is growing and more and
more innovative and joint models are beginning to
emerge, offering better prediction capabilities. In
the case of this SMS, it has been observed that there
are more than 300 articles in which the two topics
are related, however, when it comes to directly com-
pare the two, the number of articles is even smML
applications and econometric modelsaller. Taking
into account the search criteria of this article, the
trend and the highest degree of innovation, as well
as the number of articles published, the stock mar-
ket is where there are more applications of machine
learning in econometrics. Taking into account the
results of this SMS, there are many possibilities for
future lines of research, where econometric models
could be combined with supervised machine learn-
ing models, and open a new paradigm for the cre-
ation and implementation of hybrid models. In ad-
dition, other possible future lines of research would
be to analyze in more detail some specific sectors of
activity in which most of the publications are grow-
ing, in which various types of machine learning ap-
plications and econometric models converge. An
example of these types of activity could be the in-
vestment sector (both private equity and securities).
Another interesting approach would be to identify
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[11] Vincenzo Butticè, Carlotta Orsenigo, and Mike
Wright. The effect of information asymmetries
on serial crowdfunding and campaign success.
Economia e Politica Industriale, 45(2): 143–173,
2018.

[12] Rich Caruana and Alexandru Niculescu-Mizil. An
empirical comparison of supervised learning algo-
rithms. In Proceedings of the 23rd international
conference on Machine learning, pages 161–168,
2006.

[13] Oguzhan Cepni, I Ethem Güney, and Norman R
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Sevilla-Jiménez. Economic crises and market per-
formance—a machine learning approach. Tourism
Economics, 23(3): 692–696, 2017.

[57] Kai Petersen, Robert Feldt, Shahid Mujtaba, and
Michael Mattsson. Systematic mapping studies in
software engineering. In 12th International Con-
ference on Evaluation and Assessment in Software
Engineering (EASE) 12, pages 1–10, 2008.

[58] Kai Petersen, Sairam Vakkalanka, and Ludwik
Kuzniarz. Guidelines for conducting systematic
mapping studies in software engineering: An up-
date. Information and Software Technology, 64:
1–18, 2015.

[59] Mark Petticrew and Helen Roberts. Systematic
reviews in the social sciences: A practical guide.
John Wiley & Sons, 2008.

16

MACHINE LEARNING AND TRADITIONAL ECONOMETRIC . . .

[60] Vasilios Plakandaras, Theophilos Papadimitriou,
and Periklis Gogas. Forecasting transportation de-
mand for the us market. Transportation Research
Part A: Policy and Practice, 126: 195–214, 2019.
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