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KACZOREK Tadeusz 

SOLUTION OF THE STATE EQUATIONS OF 
DESCRIPTOR FRACTIONAL DISCRETE-TIME 
LINEAR SYSTEMS WITH REGULAR PENCILS  

Abstract 
A method for finding of the solutions of the state equations of descriptor fractional  discrete-time 

linear systems with regular pencils is proposed. The derivation of the solution formula is based on the 
application of the Z transform and the convolution theorem. A procedure for computation of the 
transition matrix is proposed. The effectiveness of the proposed method is demonstrated on a simple 
numerical example.  

1. INTRODUCTION 
Descriptor (singular) linear systems with regular pencils have been considered in many 

papers and books [1-4, 10-12, 15, 17, 18, 20]. The eigenvalues and invariants assignment by  
state and output feedbacks have been investigated in [10, 11] and the realization problem for 
singular positive continuous-time systems with delays in [15]. The computation of 
Kronecker’s canonical form of a singular pencil has been analyzed in [20]. A delay dependent 
criterion for a class of descriptor systems with delays varying in intervals has been proposed 
in [2].  

Fractional positive continuous-time linear systems have been addressed in [9] and positive 
linear systems with different fractional orders in [8]. A new concept of the practical stability 
of the positive fractional 2D systems has been proposed in [14]. The reachability of the 
positive fractional linear systems has been considered in [9] and some selected problems in 
theory of fractional linear systems in the monograph [16]. 

A new class of descriptor fractional linear systems and electrical circuits has been 
introduced, their solution of state equations has been derived and a method for decomposition 
of the descriptor fractional linear systems with regular pencils into dynamic and static parts 
has been proposed in [6]. Positive fractional continuous-time linear systems with singular 
pencils has been considered in [7]. 

In this paper a method for finding of the solutions of the state equations of descriptor 
fractional discrete-time linear systems with regular pencils will be proposed. 

The paper is organized as follows. In section 2 the solution to the state equation of the 
descriptor system is derived using the method based on the Z transform and the convolution 
theorem. A method for computation of the transition matrix is proposed in section 3. In 
section 4 the proposed method is illustrated on a simple numerical example. Concluding 
remarks are given in section 5. 
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The following notation will be used: ℜ  - the set of real numbers, mn×ℜ  - the set of mn×  
real matrices and 1×ℜ=ℜ nn , +Z - the set of nn×  nonnegative matrices, nI - the nn×  identity 

matrix  

2. SOLUTION OF THE STATE EQUATION 
Consider the descriptor fractional discrete-time linear system 
 

iii BuAxxE +=∆ +1
α , ,...}2,1,0{=∈ +Zi , 10 << α                                  (1) 

 
where α is fractional order, n

ix ℜ∈  is the state vector m
iu ℜ∈  is the input vector and 

nnAE ×ℜ∈, , mnB ×ℜ∈ .  It is assumed that det E = 0 but the pencil (E, A) is regular, i.e. 
 

0]det[ ≠− AEz  for some C∈z  (the field of complex numbers).             (2) 
 
Without lost of generality we may assume 
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Consistent boundary conditions for (1) are given by Ex0. The fractional difference of the order 
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Substitution of (4a) into (1) yields 
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where αEAEcAF +=−= 1 . 
Applying to (5) the Z transform and taking into account that [11] 
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where 
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Let 
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where µ is positive integer defined by the pair (E, A) [11, 20]. Comparison of the coefficients 
at the same powers of z of the equation 
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From (9b) and (9c) we have the matrix equation 
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The equation (10a) has the solution 
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It is easy to show that the condition (11) is satisfied if the condition (2) is met. 
Substituting (8) into (7a) we obtain 
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Applying the inverse transform Z-1 and the convolution theorem to (12) we obtain 
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To find the solution to the equation (1) first we compute the transition matrices jψ  for 

,...2,1,...,1, µµ −−=j  and next using (13) the desired solution.  

3. COMPUTATION OF TRANSITION MATRICES 

To compute the transition matrices kψ  for ,...,...,1, Nk µµ −−=  the following procedure 

is recommended. 
Procedure 1. 
Step 1. Find a solution µψ 0  of the equation 

 
VG =µψ 01                                                       (14) 

 
where G1, µψ 0  and V are defined by (10b). Note that if the matrix E has the form (3) 

then the first r rows of the matrix µψ 0  are zero and its last n – r rows are arbitrary. 

Step 2. Choose n – r arbitrary rows of the matrix 0ψ  so that the equation 
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has a solution with arbitrary last n – r rows of the matrix 1ψ .  

Step 3. Knowing µψ 0  choose the last n – r rows of the matrix 1ψ  so that the equation 

 

0
2

1

0

0
ψ

ψ
ψ









=

















−
F

EF

E
                                           (16) 

 
has a solution with arbitrary last n – r rows of the matrix 2ψ . Repeating the last step 
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The details of the procedure will be shown on the following example.  
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4. EXAMPLE 
Find the solution to the equation (1) for α = 0.5 with the matrices 
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In this case the pencil (2) of (17) is regular since 
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Using Procedure 1 we obtain the following. 
Step 1. In this case the equation (14) has the form 
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and its solution with the arbitrary second row ][ 0

22
0
21 ψψ  of 0ψ  is given by 
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Step 2. We choose the row ][ 0
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 with the second arbitrary row ][ 1
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has the solution  
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Continuing the procedure we obtain 
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Using (13), (17) and (19) we obtain the desired solution of the form 
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where cj are defined by (4b).  

5. CONCLUDING REMARKS 
A new method for finding of the solution of the state equation of descriptor fractional  

discrete-time linear systems with regular pencils has been proposed. Derivation of the 
solution formula has been based on the application of the Z transform and the convolution 
theorem. A procedure for computation of the transition matrices has been proposed and its 
application has been demonstrated on a simple numerical example. The presented method can 
be easily extended to continuous-time descriptor fractional linear system with regular pencils. 
An open problem is an extension of the method for 2D descriptor fractional discrete and 
continuous-discrete linear systems.  
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ROZWI ĄZANIE RÓWNA Ń STANU 
DESKRYPTOWYCH UKŁADÓW 

DYSKRETNYCH RZ ĘDÓW NIECAŁKOWITYCH 
O PĘKACH REGULARNYCH 

Streszczenie 
Podano metodę wyznaczania rozwiązań równań stanu deskryptowych układów dyskretnych 

rzędów niecałkowitych o pękach regularnych. Rozwiązanie to zostało wyprowadzone korzystając z 
przekształcenia zet i twierdzenia o transformacie splotu. Zaproponowano procedurę wyznaczania 
macierzy tranzycji tych układów. Proponowaną metodę zilustrowano przykładem numerycznym.  
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