PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

EEG signal analysis for monitoring concentration of operators

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Often, operators of machines, including unmanned ground vehicles (UGVs) or working machines, are forced to work in unfavorable conditions, such as high tem‐ peratures, continuously for a long period of time. This has a huge impact on their concentration, which usu‐ ally determines the success of many tasks entrusted to them. Electroencephalography (EEG) allows the study of the electrical activity of the brain. It allows the determination, for example, of whether the operator is able to focus on the realization of his tasks. The main goal of this article was to develop an algorithm for determining the state of brain activity by analyzing the EEG signal. For this purpose, methods of EEG sig‐ nal acquisition and processing were described, including EEG equipment and types and location of electrodes. Particular attention was paid to EEG signal acquisition, EEG signal artifacts, and disturbances, and elements of the adult’s correct EEG recording were described in detail. In order to develop the algorithm mentioned, basic types of brain waves were discussed, and exem‐ plary states of brain activity were recorded. The influ‐ ence of technical aspects on the recording of EEG sig‐ nals was also emphasized. Additionally, a block diagram was created which is the basis for the operation of the said algorithm. The LabVIEW environment was used to implement the created algorithm. The results of the research showing the operation of the developed EEG signal analyzer were also presented. Based on the results of the study, the EEG analyzer was able to accurately determine the condition of the examined person and could be used to study the concentration of machine operators.
Twórcy
  • Institute of Robots and Machine Design, Faculty of Mechanical Engineering, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00‐908, Warsaw, Poland
Bibliografia
  • [1] Hoerth M. Rowan’s Primer of EEG, Second Edition. Journal of Clinical Neurophysiology. 2018:1.
  • [2] P. Augustyniak. Przetwarzanie sygnałów elektro‐diagnostycznych. AGH. 2001.
  • [3] M. Kołodziej, A. Majkowski, R. Rak. Interfejs mózg‐komputer – wybrane problemy rejestracji i analizy sygnału EEG. Przegla̧d Elektrotechniczny. 2009.
  • [4] R. Rak, M. Kołodziej, A. Majkowski. Metrologia w Medycynie, Interfejs-mózg-komputer. WAT. 2011.
  • [5] Y. Zhang, M. Zhang, Q. Fang. “Scoping Review of EEG Studies in Construction Safety.” International Journal of Environmental Research and Public Health. 2019;16(21):4146, doi:10.3390/ijerph16214146.
  • [6] P. Li, R. Meziane, M. Otis, H. Ezzaidi, P. Cardou. A Smart Safety Helmet using IMU and EEG sensors for worker fatigue detection. 2014 IEEE International Symposium on Robotic and Sensors Environments (ROSE) Proceedings. 2014, IEEE.
  • [7] H. Jebelli, S. Hwang, S. Lee. “EEG‐based workers’ stress recognition at construction sites.” Automation in Construction. 2018;93:315–324,doi: 10.1016/j.autcon.2018.05.027.
  • [8] S. Hwang, H. Jebelli, B. Choi, M. Choi, S. Lee. “Measuring workers’ emotional state during construction tasks using wearable EEG.”Journal of Construction Engineering and Management. 2018;144(7):04018050, doi:10.1061/(ASCE)CO.1943‐7862.0001506.
  • [9] S. Saedi, A. Fini, M. Khanzadi, J. Wong, M. Sheikhkhoshkar, M. Banaei. “Applications of electroencephalography in construction.”Automation in Construction. 2022;133:103985, doi: 10.1016/j.autcon.2021.103985.
  • [10] G. N. Ranky, S. Adamovich. Analysis of a commercial EEG device for the control of a robot arm. Proceedings of the 2010 IEEE 36th Annual Northeast Bioengineering Conference (NEBEC) 2010, IEEE, doi: 10.1109/NEBC.2010.5458188.
  • [11] Y. Li, G. Zhou, D. Graham, A. Holtzhauer. “Towards an EEG‐based brain‐computer interface for online robot control.” Multimed. Tools Appl. 2016; 75: 7999–8017, doi: 10.1007/s11042‐015‐2717‐z.
  • [12] X. Gu, Z. Cao, A. Jolfaei, P. Xu, D. Wu, T. Jung, C. Lin. EEG‐based Brain‐Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and their Applications. arXiv 2020, doi: 10.48550/arXiv.2001.11337
  • [13] P. Abhang. Introduction to EEG‐ and Speech‐Based Emotion Recognition. Elsevier Science; 2016.
  • [14] W. Tatum. Handbook of EEG interpretation. Demos Medical; 2014.
  • [15] M. Souϐineyestani, D. Dowling, A. Khan. “Electroencephalography (EEG) Technology Applications and Available Devices.” Applied Sciences. 2020;10(21):7453, doi: 10.3390/app10217453.
  • [16] DEYMED: https://deymed.com/truscan‐eeg (access 22.06.2022).
  • [17] R. Lyons. Understanding digital signal processing.Upper Saddle River, N.J.: Prentice Hall; 2011.
  • [18] R. Typiak, Ł. Rykała, A. Typiak. “Configuring a UWB Based Location System for a UGV Operating in a Follow‐Me Scenario.” Energies.2021;14(17):5517, doi: 10.3390/en14175517.
  • [19] M. Owen. Practical signal processing. Cambridge: Cambridge University Press; 2012.
  • [20] T. Holton. Digital Signal Processing: Principles and Applications. Cambridge: Cambridge University Press; 2021.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6330be0e-8047-4c35-a9da-b671e28ee007
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.