PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analytical model for evaluation of thermal–shrinkage strains and stresses in RC wall-on-slab structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent experiences have shown that thermal–shrinkage cracks in reinforced concrete walls are a common phenomenon. The cracks appear above the joint between the wall and the foundation at the construction phase of these structural members. This problem affects, among the others, bridge abutments, retaining walls, tank walls and radiation protection shields, in which cracking is highly undesirable due to tightness requirements. Prediction of the early-age thermal and shrinkage effects is not an easy task because of the complexity of the issue and a large number of contributing technological and material factors deciding about the magnitude and character of early-age volume changes. This paper presents a complete analytical model for determination of hardening temperature, shrinkage deformations and thermal–shrinkage stresses in early stages of hardening of reinforced concrete walls cast against previously executed foundation. As a basis for the model development, numerical analysis of 39 walls was performed in which the analysed walls had various dimensions and were made of concretes with different types of cements and aggregates. A calculation method for determination of stresses proposed by Eurocode 2 is also referred.
Rocznik
Strony
75--95
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
  • Faculty of Civil Engineering, Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland
autor
  • Faculty of Civil Engineering, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland
  • Faculty of Civil Engineering, Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] M. Al-Gburi, J.E. Jonasson, M. Nilsson, H. Hedlund, A. Hosthagen, Simplified methods for crack risk analyses of early age concrete, part 1: development of equivalentrestraint method, Nordic Concrete Research Publication 46 (2) (2012) 17–38.
  • [2] M. Al-Gburi, J.E. Jonasson, S.T. Yousif, M.M. Nilsson, Simplified methods for crack risk analyses of early age concrete, part 2: restraint factors for typical case wall-on-slab, Nordic Concrete Research Publication 46 (2) (2012) 39–56.
  • [3] F. Benboudjema, J.M. Torrenti, Early-age behaviour of concrete nuclear containments, Nuclear Engineering and Design 238 (10) (2008) 2495–2506.
  • [4] K. Flaga, K. Furtak, Problem of thermal and shrinkage cracking in tanks vertical walls and retaining walls near their contact with solid foundation slabs, Architecture–Civil Engineering–Environment 2 (2) (2009) 23–30.
  • [5] B. Klemczak, A. Knoppik-Wróbel, Early age thermal and shrinkage cracks in concrete structures – description of the problem, Architecture–Civil Engineering–Environment 4 (2) (2011) 35–48.
  • [6] B. Klemczak, A. Knoppik-Wróbel, Analysis of early-age thermal and shrinkage stresses in RC wall, ACI Structural Journal 111 (2) (2014) 313–322.
  • [7] B. Klemczak, A. Knoppik-Wróbel, Reinforced concrete tank walls and bridge abutments: early-age behaviour, analytic approaches and numerical models, Engineering Structures 84 (2015) 233–251.
  • [8] M. Aurich, A.C. Filho, T.N. Bittencourt, S.P. Shah, Finite element modeling of concrete behaviour at early age, Revista IBRACON de Estruturas e Materiais 2 (1) (2009) 37–58.
  • [9] M. Azenha, C. Sousa, R. Faria, A. Neves, Thermo-hygro- mechanical modelling of self-induced stresses during the service life of RC structures, Engineering Structures 33 (12) (2011) 3442–3453.
  • [10] M. Briffaut, F. Benboudjema, J.M. Torrenti, G. Nahas, Effects of the early age thermal behaviour on long term damage risks in massive concrete structures, European Journal of Environmental and Civil Engineering 16 (5) (2012) 589–605.
  • [11] H.G. Kwak, S.J. Ha, Non-structural cracking in RC walls. Part II: quantitative prediction model, Cement and Concrete Research 36 (2006) 761–775.
  • [12] H.G. Kwak, S.J. Ha, J.K. Kim, Non-structural cracking in RC walls. Part I: finite element formulation, Cement and Concrete Research 36 (2006) 749–760.
  • [13] J. Zreiki, F. Bouchelaghema, M. Chaouchea, Early-age behaviour of concrete in massive structures – experimentation and modelling, Nuclear Engineering and Design 240 (2010) 2643–2654.
  • [14] W. Schleeh, Die Zwängspannungen in einseitig festgehaltenen Wandscheiben, Beton- und Stahlbetonbau 57 (3) (1962) 64–72.
  • [15] H. Rüsch, D. Jungwirth, Stahlbeton-Spannbeton, Band 2, Werner-Verlag, Dusseldorf, 1976.
  • [16] F.S. Rostásy, W. Henning, Zwang in Stahlbetonwänden auf Fundamenten, Beton- ind Stahlbetonbau 84 (8) (1989) 208–214.
  • [17] ACI Committee No 207.2R, Effect of restraint, volume change, and reinforcement on cracking of mass concrete, ACI Materials Journal 87 (3) (1990) 271–295.
  • [18] ACI Committee 207, Report on Thermal and Volume Change Effects on Cracking of Mass Concrete (ACI 207.2R-07). ACI Manual of Concrete Practice, Part 1, 2011.
  • [19] JSCE, Guidelines for Concrete. No. 15: Standard Specifications for Concrete Structures. Design, 2011.
  • [20] Japanese Concrete Institute, Guidelines for Control of Cracking of Mass Concrete, 2008.
  • [21] P.B. Bamforth, CIRIA C660. Early-age Thermal Crack Control in Concrete, CIRIA, Classic House London, 2007.
  • [22] EN 1992-3, Eurocode 2 – Design of concrete structures – Part 3: Liquid retaining and containment structures, 2008.
  • [23] M. Nilsson, Restraint factors and partial coefficients for crack risk analyses of early age concrete structures, (PhD thesis), Luleå University of Technology, 2003.
  • [24] M. Larsson, Thermal crack estimation in early age concrete: models and methods for practical application, (PhD thesis), Luleå University of Technology, 2003.
  • [25] B. Klemczak, Modelling thermal–shrinkage stresses in early age massive concrete structures – comparative study of basic models, Archives of Civil and Mechanical Engineering 14 (4) (2014) 721–733.
  • [26] B. Klemczak, A. Knoppik-Wróbel, Early age thermal and shrinkage cracks in concrete structures – influence of curing conditions, Architecture–Civil Engineering–Environment 4 (4) (2011) 47–58.
  • [27] B. Klemczak, A. Knoppik-Wróbel, Early age thermal and shrinkage cracks in concrete structures – influence of geometry and dimension of a structure, Architecture–Civil Engineering–Environment 4 (3) (2011) 55–70.
  • [28] B. Klemczak, M. Batog, Heat of hydration of low-clinker cements. Pt. 1. Semi-adiabatic and isothermal tests at different temperature, Journal of Thermal Analysis and Calorimetry 123 (2) (2016) 1351–1360.
  • [29] A.K. Schindler, K.J. Folliard, Heat of hydration models for cementitious materials, ACI Materials Journal 102 (1) (2005) 24–33.
  • [30] W. Kiernożycki, Massive Concrete Structures, Polski Cement, Kraków, 2003 (in Polish).
  • [31] EN 1992-1-1, Eurocode 2 – Design of concrete structures – Part 1-1: General rules and rules for buildings, 2008.
  • [32] CEB-FIP FIB Model Code 1990, Thomas Telford, London, 1991.
  • [33] B. Klemczak, Prediction of coupled heat and moisture transfer in early-age massive concrete structures, Numerical Heat Transfer. Part A: Applications 60 (3) (2011) 212–233.
  • [34] A. Knoppik-Wróbel, B. Klemczak, Degree of restraint concept in analysis of early-age stresses in concrete walls, Engineering Structures 102 (2015) 369–386.
  • [35] N.L. Hancox, The Diffusion of Water in Concrete, UKAEA, Winfrith, 1966.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63264491-e1df-443a-906e-95d41a88bfef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.