Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Energy conservation and environmental pollution elimination are among the most important factors that contribute to improving refrigeration and air conditioning systems. This article focused on the effect of nanoparticles Al2O3 mixed with PAG oil in concertation 0.14 % used base fluid R600a (isobutane) on a one ton vapor compression refrigeration system’s performance and compare it with the mixed refrigerant (R290/R600a) in ratio 60 % /40 %, in vapour compression system with double tube heat exchanger experimentally three ratios were tested(0.1,0.12,0.14) % and it was noted that 0.14 % was the ratio that had the most impact on the results. Adding Al2O3 in concertation 0.14% with R600a the reading recorded in time about 80(min) operation, the study noted increased in COP approximately in (R600a/Al2O3) is 35 % compared with COP in mixed refrigerant (60/40) % R290/R600a is 28%, and noted reduced in work of compressor is 102 KJ/Kg compare with mixed refrigerant (R290/R600a) ratio 60% /40% that 110 KJ/Kg improvement about 9%. The evaporator inlet temperature reach to -20oC in (R600a/Al2O3) and -15oC in mixed refrigerant (R290/R600a)60%/ 40%, so the refrigerating effect of (R600a/Al2O3) nano refrigerant at a concentration of 0.14 % is 438 KJ/Kg showed an improvement of approximately 29%. due to decreased in temperature inlet to evaporator. Theoretical results were determined using simulation software ProII and EES software based on mathematical models of vapour compression system components, the COP shows 15% difference due to measurement errors.
Wydawca
Rocznik
Tom
Strony
177--189
Opis fizyczny
Bibliogr., 30 poz., fig., tab.
Twórcy
autor
- Technical Institute for Administration, Middle Technical University, Baghdad, Iraq
- Technical Institute of Baquba, Middle Technical University, Diyala, Iraq
autor
- Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq
autor
- Technical Institute of Baquba, Middle Technical University, Diyala, Iraq
autor
- Siberian State Industrial University, Siberian, Russia
autor
- Technical Institute of Baquba, Middle Technical University, Diyala, Iraq
Bibliografia
- 1. Oshodin TE, Bolaji BO, Olorunfemi BJ. Mixture of carbon-dioxide and liquefied petroleum gas as refrigerants in vapour compression refrigeration system: A review. FUOYE J Eng Technol. 2023;8(1):89–95. https://doi.org/10.46792/fuoyejet.v8i1.945.
- 2. Mahan HM, Katawy A, Shabeeb OA, Alrubaiy AAAG. Analyzing thermal insulation of concrete polymer by adding mineral wool. Advances in Science and Technology Research Journal 2025;19(5):430–439. https://doi.or/10.12913/22998624/202766.
- 3. Shengyu L, Jun L. A theoretical comparative study of vapor-compression refrigeration cycle using Al2O3 nanoparticle with low-GWP refrigerants. Entropy 24.12;2022,1820. https://doi.org/10.3390/e24121820.
- 4. Ghanbarpour M, Mota‐babiloni A, Badran BE, Khodabandeh R. Energy, exergy, and environmental (3E) analysis of hydrocarbons as low GWP alternatives to R134a in vapor compression refrigeration configurations. Appl Sci. 2021;11(13). https://doi.org/10.3390/app11136226.
- 5. Babarinde TO, Madyira DM. Analysis of a refrigeration system using carbon nanotubes (CNTs) lubricant and a combination of R290/R600 refrigerants. J Phys Conf Ser. 2024;2748(1). http://dx.doi.org/10.1088/1742-6596/2748/1/012011.
- 6. Karthick M, Karuppiah SK, Varatharajan K. Performance investigation and exergy analysis of vapor compression refrigeration system operated using r600a refrigerant and nanoadditive compressor oil. Therm Sci. 2020;24(5):2977–89. http://dx.doi.org/10.2298/TSCI180527024M.
- 7. Erramshetty S, Manikanta V. Enhancement of vapour compression refrigeration system (VCR) performance using greenhouse gas mixtures. Int J Comput Eng Res. 2020;10(9):1–10. Available from: www.ijceronline.com http://dx.doi.org/10.1007/s10973-018-7623-y.
- 8. Mishra RS. Performance improvement of vapour compression refrigeration system (VCRS) using ecofriendly refrigerants. Int J Res Eng Innov. 2020;4(3):174–8. Available from: https://doi.org/10.36037/IJREI.2020.4309.
- 9. Hamza A, Mehdi S, Aized T. Thermodynamic performance of vapor compression refrigeration cycle (VCRC) retrofitted with low-GWP refrigerants Thermodynamic performance of vapor compression refrigeration cycle (VCRC) retrofitted with low-GWP refrigerants. Proc Int Conf Mech Eng. 2020;(February):1–9. http://dx.doi.org/10.18831/james.in/2016031004.
- 10. Yousif SS, Al-Obaidi MA, Al-Muhsen NFO. Towards More Efficient Refrigeration: A Study on the Use of TiO2 and Al2O3 Nanoparticles. Int J Heat Technol. 2024;42(4):1251–6. https://doi.org/10.18280/ijht.420415.
- 11. Usri NA, Azmi WH, Mamat R, Hamid KA, Najafi G. Thermal Conductivity Enhancement of Al2O3 Nanofluid in Ethylene Glycol and Water Mixture. 79, Energy Procedia. Elsevier B.V.; 2015;397–402 Available from: http://dx.doi.org/10.1016/j.egypro.2015.11.509.
- 12. Goudarzi K, Jamali H. Heat transfer enhancement of Al2O3-EG nanofluid in a car radiator with wire coil inserts. Appl Therm Eng. 2017;118:510–7. https://doi.org/10.1016/j.applthermaleng.2017.03.016.
- 13. Abdallah AS, Yasin NJ, Ameen HA. Thermal Performance Enhancement of Heat Pipe Heat Exchanger in the Air-Conditioning System By Using Nanofluid. Front Heat Mass Transf. 2022;18:1–7. https://doi.org/10.5098/hmt.18.10.
- 14. Senthilkumar A, Mohammed Sahaluddeen PA, Noushad MN, Mohammed Musthafa EK. Experimental investigation of ZnO/SiO2 hybrid nano-lubricant in R600a vapour compression refrigeration system. Mater Today Proc. 2020;45(August):6087–93. Available from: https://doi.org/10.1016/j.matpr.2020.10.180.
- 15. Abdullah BN, Soheel AH. CFD analysis of improving air conditioning system performance by adding SiO2 nanoparticles to the compressor oil. CFD Lett. 2025;17(2):136–47. https://doi.org/10.37934/cfdl.17.2.136147.
- 16. Dilawar M, Qayoum A. Simulation of vapour compression air conditioning system using Al2O3 based nanofluid refrigerant. J Therm Eng. 2023;9(5):1307–23. https://doi.org/10.18186/thermal.1377210.
- 17. Sakhir AA, Mahmoud RK. The effect of nanoparticles concentration AL2O3 on the performance in compression refrigeration system. Technium. 2021;3(4):67–89. https://doi.org/10.18186/thermal.1377210.
- 18. Odunfa MK, Oseni OD. Numerical simulation and performance assessment of a nanoparticle enhanced vapour compression refrigeration system. J Power Energy Eng. 2021;9(11):33–49. https://doi.org/10.4236/jpee.2021.911002.
- 19. Mohamed HE, Camdali U, Biyikoglu A, Actas M. Enhancing the performance of a vapour compression refrigerator system using R134a with a CuO/CeO2 nano-refrigerant. Stroj Vestnik/Journal Mech Eng. 2022;68(6):395–410. http://dx.doi.org/10.5545/sv-jme.2021.7454.
- 20. Mohamed HEA, Camdali U, Biyikoglu A, Aktas M. The effects of CuO/CeO2 mixture nanoparticles on the performance of a vapor compression refrigeration system. Sci Rep. 2022;12(1):1–18. Available from: https://doi.org/10.1038/s41598-022-12942-7.
- 21. Hariram V, Al Riyami HS, Nadanakumar V, Godwin John J, Christu Paul R, Nakandhrakumar RS, et al. Influence of Al2O3 Nano-particles Additives in R134a Refrigerant for Vapour Compression Refrigeration System. Int J Veh Struct Syst. 2022;14(6):801–6. https://doi.org/10.4273/ijvss.14.6.19.
- 22. Yeunyongkul P, Sakulchangsatjatai P, Kammuanglue N, Terdtoon P. Experimental investigation of the closed loop oscillating heat pipe condenser for vapor compression refrigeration. J Appl Sci Eng. 2012;15(2):117–22. https://doi.org/10.3844/erjsp.2010.104.110.
- 23. Al Khiro HA, Boukhanouf R. Analytical and computer modelling of a thermo-mechanical vapour compression system for space air conditioning in buildings. Energy Convers Man. 2025;323(PA):119252. Available from: https://doi.org/10.1016/j.enconman.2024.119252.
- 24. Meng Z, Zhang H, Qiu J, Lei M. Theoretical analysis of R1234ze(E), R152a, and R1234ze(E)/R152a mixtures as replacements of R134a in vapor compression system. Adv Mech Eng. 2016;8(11):1–10. http://dx.doi.org/10.1177/1687814016676945.
- 25. Qaid DS, Sakhir AA, Engineering M, Engineering C. Experimental study of a domestic refrigerator using (SiO2/PAG oil/R-134a) nano-refrigerant as a replacement for pure R-134a. 2022;15:38–41. http://dx.doi.org/10.30772/qjes.v15i1.810.
- 26. Khan AA, Ehtesham M, Siddiqui F. Reducing energy consumption of refrigerator compressor using aluminum oxide nanoparticles reducción del consumo de energía del compresor de refrigerador mediante nanopartículas de óxido de aluminio reduzindo o consumo de energia do compressor de refrigeradores usando nanopartículas de óxido de alumínio. Memoria Investigaciones en Ingenieria. 2024;26:38–53. http://dx.doi.org/10.36561/ING.26.3.
- 27. Barai R, Kumar D, Wankhade A. Heat transfer performance of nanofluids in heat exchanger: a review. J Therm Eng. 2023;9(1):86–106. https://doi.org/10.18186/thermal.1243398.
- 28. Wu Y, Zhang H, Zhang Q, Qiu J, Rui S. The study of thermodynamic properties of zeotropic mixtures of R600a/R23/R14. Adv Mech Eng. 2017;9(3):1–11. http://dx.doi.org/10.1177/1687814017691214.
- 29. Zhang L, Yang C, Liu H, Du P, Gao H. Theoretical Investigation on the properties of R744/R290 mixtures. Procedia Eng. 2017;205:1620–6. Available from: https://doi.org/10.1016/j.proeng.2017.10.304.
- 30. Alizadeh A. Application of nanoparticles in the process of phase change paraffin in a chamber. Advances in Science and Technology Research Journal. 2019;13(3):113–119. https://doi.org/10.12913/22998624/110372.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-632153ba-ff4e-470e-a3dd-28f278dc531a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.