Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents results of pitting corrosion resistance of TIG (autogenous and with filler metal) and A-TIG welded lean duplex stainless steel S82441/1.4662 evaluated according to ASTM G48 method, where autogenous TIG welding process was applied using different amounts of heat input and shielding gases like pure Ar and Ar+N2 and Ar+He mixtures. The results of pitting corrosion resistance of the welded joints of lean duplex stainless steel S82441 were studied in as weld conditions and after different mechanical surface finish treatments. The results of the critical pitting temperature (CPT) determined according to ASTM G48 at temperatures of 15, 25 and 35°C were presented. Three different surface treatment after welding were applied: etching, milling, brushing + etching. The influence of post weld surface treatment was studied in respect to the pitting corrosion resistance, basing on CPT temperature. Research on TIG welding of lean duplex stainless steel S82441/1.4662 showed a clear influence of the applied shielding gas mixtures, where the addition of 5 to 15% N2 to Ar virtually no effect on the level of resistance to pitting corrosion, only 5% N2 addition has a positive effect, while use of a mixture of 50% Ar + 50% He compared with welding at 100% Ar atmosphere, can significantly reduce the resistance to pitting corrosion. Definite good results were obtained during TIG welding with the participation of activation flux (A-TIG). The weld surface of lean duplex stainless S82441/1.4662 obtained in A-TIG welding without the addition of filler metal has a much lower tendency to pitting corrosion than traditional welds made by TIG method. Pitting corrosion resistance of welds made by A-TIG improved with the increase of the heat input in the tested range of welding current 100-200 A. It was also found that the intensity of the occurrence of pitting does not affect the method of cleaning welds after welding, but the mechanical removal of a thin surface layer of metal significantly reduces their intensity.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
771--784
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Facult y of Mechanical Engineering, 18a Konarskiego Str., 44-100 Gliwice, Poland
autor
- Institute of Welding, Welding Technologies Department, 16-18 Bł. Czesława Str., 44-100 Gliwice, Poland
Bibliografia
- [1] Practical Guidelines for the Fabrication of Duplex Stainless Steel, IMOA International Molybdenum Association 2009.
- [2] Duplex Stainless Steel LDX 2404TM, Outokumpu Stainless AB, September 2010.
- [3] J. Charles, Stainless Steel World, 31-36, December 2008.
- [4] J. Charles, J.D. Mithieux, J. Krautschick, N. Suutala, J. Antonio Simon, B. Van Hecke, T. Pauly, 6th European Stainless Steel Conference, Science and Market, Helsinki, Finland, June 10-13, 2008.
- [5] R. N. Gunn, Duplex stainless steels. Microstructure, properties and applications, Abington Publishing, Cambridge England, 1997.
- [6] Brochure of ESAB, Welding duplex stainless steel the ESAB way, a full range of consumables for all duplex grades and welding processes, ESAB AB Göteborg, Sweden 2011.
- [7] Brochure of AK Steel Corporation, NITRONIC 19D Stainless Steel, Product Data Bulletin, AK Steel Corporation, 2007.
- [8] J. Nowacki, Stal dupleks i jej spawalność, WNT , Warszawa 2009.
- [9] J. Nowacki, Inżynieria Materiałowa 6, 746-750 (2003).
- [10] M. Sozańska, J. Michalska, Inżynieria Materiałowa 3, 16-24 (2004).
- [11] J. Adamczyk J., Inżynieria wyrobów stalowych, Wydawnictwo Politechniki Śląskiej, Gliwice 2000.
- [12] J. Banas, A. Mazurkiewicz, Mater Sci Eng., A277 183 191 (2000).
- [13] J. A. Jimenez, M. Carsi, O.A. Ruano, F. Penalba, J Mater Sci. 35, 907-915 (2000).
- [14] A. Grajcar, G. Wróbel (Ed.), Polimery i Kompozyty Konstrukcyjne 174-193, Cieszyn (2011).
- [15] L. A. Dobrzański, A. Grajcar, W. Borek, Mater Sci Forum 638-642, 3224-322 (2010).
- [16] L. A. Dobrzański, W. Borek, Mater Sci Forum 654-656, (1-3), 266-269
- [17] M. Bonek, G. Matula, L. A. Dobrzanski, Adv Mat Res. 291-294, 1365-1368 (2011).
- [18] M. Bonek, L. A. Dobrzański, Mater Sci Forum 654-656, 1848-1851 (2010).
- [19] T. Tański, Materialwiss Werkst 45, 5, 333-343 (2014).
- [20] A. D. Dobrzańska-Danikiewicz, T. Tański, J. Domagała-Dubiel, Arch Civ Mech Eng. 12, 318-326 (2012)
- [21] G. Chai, U. Kivisäkk, J. Tokaruk, J. Eidhagen, Stainless Steel World, March 27-33 (2009).
- [22] A. Zieliński, M. Miczka, B. Boryczko, M. Sroka, Arch. Civ. Mech. Eng. 2016, DOI:10.1016/j.acme.2016.04.010 (in press).
- [23] A. Zieliński, M. Miczka, M. Sroka, Mater. Sci. Tech-Lond., 2016, DOI:10.1080/02670836.2016.1150242 (in press).
- [24] Z. Brytan, J. Niagaj, Chiang Mai J Sci. 40, 5 Special Issue 1, ,923-937
- [25] Z. Brytan, J. Niagaj, Chiang Mai J Sci. 40 No.5 Special Issue 1, 874-885 (2013).
- [26] Z. Brytan, Development trends of duplex stainless steels, Interdisciplinary Integration of Science in Technology, J.Shalapko (Ed.), B. Żółkowski, Khmelnytsky-Jaremche, Ukraine 329-336 (2013).
- [27] W. Sitek, Trans Famena. 34, 3, 39-46 (2010).
- [28] ASTM standard G48-03 (2009) Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution.
- [29] N. Sathirachinda, R. Petterson, S. Wessman, J. Pan, Corros Sci. 52, 179-186 (2010).
- [30] R. Pettersson, M. Johansson, E.M. Westin, A corrosion management and applications engineering magazine from Outokumpu, Acom 1, 3-7 (2014).
- [31] E. M. Westin, C.-O. A. Olsson, S. Hertzman, Corros Sci. 50, 2620-2634 (2008).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-631c4955-4ac8-4c13-9268-7724ec42ea6d