PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Teaching chemical engineering in Europe – developments, dilemmas and practical examples

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This perspective paper focuses on the changes in teaching chemical engineering in Europe triggered by new challenges and megatrends observed in the chemical and related industries. Among the new teaching areas to address those challenges and megatrends, process intensification, digitalization and advanced materials are expected to play the most important role and are discussed in more detail. The discussion on incorporation of those new areas in the university curricula is illustrated with a comparison of educational approaches to the chemical engineering teaching at two universities – Delft University of Technology and Warsaw University of Technology. The aim of this paper is to focus the attention of university teachers and potential decision makers on the most important challenges for contemporary teaching of chemical engineering.
Rocznik
Strony
321–--335
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Delft University of Technology, Process and Energy Department, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, ul. Warynskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Bhute V.J., Inguva P., Shah U., Brechtelsbauer C., 2021. Transforming traditional teaching laboratories for effective remote delivery – A review. Educ. Chem. Eng., 35, 96–104. DOI: 10.1016/j.ece.2021.01.008.
  • 2. Bird R.B., StewartW.E., Lightfood E.N., 1960. Transport phenomena. J.Wiley and Sons Inc., New York, 415–421.
  • 3. Christofides P. (Ed.), 2020-2021. Machine learning in process control and systems engineering. Chem. Eng. Res. Des. Article collection available at: https://www.sciencedirect.com/journal/chemical-engineering-research-anddesign/special-issue/10KQX9TBLMZ.
  • 4. EFCE, 1999. The Bologna Process and the European higher education area. Available at: https://ec.europa.eu/education/policies/higher-education/bologna-process-and-european-higher-education-area_en.
  • 5. EFCE, 2005. EFCE Bologna recommendations. Available at: www.efce.info/efce_media/Downloads/EFCE_Bologna_Recom_0905.pdf
  • 6. EFCE, 2010. EFCE Bologna recommendations. Available at: https://efce.info/efce_media/Downloads/wpe/2010_EFCE_Bologna_Recommendations_final.pdf.
  • 7. EFCE, 2020. EFCE Bologna recommendations 2020. Available at: https://efce.info/efce_media/Downloads/wpe/EFCE_Bologna_Recommendations_Approved.pdf.
  • 8. Elnashaie S.S., Danafar F., Rafsanjani H.H., 2015. Nanotechnology for chemical engineers. Springer, Singapore. DOI: 10.1007/978-981-287-496-2.
  • 9. Feise H.J., Schaer E., 2021. Mastering digitized chemical engineering. Educ. Chem. Eng., 34, 78–86. DOI: 10.1016/j.ece.2020.11.011.
  • 10. Fernandez Rivas D., Boffito D., Faria-Albanese J., Glassey J., Afraz N., Akse H., Boodhoo K.V.K., Bos R., Cantin J., Wai Y., Chiang E., Commenge J.-M., Dubois J.-L., Galli F., Gueneau de Mussy J.P., Harmsen J., Kalra S., Keil F.J, Morales-Menendez R., Navarro-Brull F.J., Noel T., Ogden K., Patience G.S., Reay D., Santos R.M., Smith-Schoettker A., Stankiewicz A.I., Van den Berg H., Van Gerven T., Van Gestel J., Van der Stelt M., Van de Ven M., Weber R. S., 2020a. Process intensification education contributes to sustainable development goals. Part Educ. Chem. Eng., 32, 1–14. DOI: 10.1016/j.ece.2020.04.003.
  • 11. Fernandez Rivas D., Boffito D. C., Faria-Albanese J., Glassey J., Afraz N., Akse H., Boodhoo K.V.K., Bos R., Cantin J., Wai Y., Chiang E., Commenge J.-M., Dubois J.-L., Galli F., Gueneau de Mussy J.P., Harmsen J., Kalra S., Keil F.J, Morales-Menendez R., Navarro-Brull F.J., Noel T., Ogden K., Patience G.S., Reay D., Santos R.M., Smith-Schoettker A., Stankiewicz A.I., Van den Berg H., Van Gerven T., Van Gestel J., Van der Stelt M., Van de Ven M., Weber R. S., 2020b. Process intensification education contributes to sustainable development goals. Part 2, Educ. Chem. Eng., 32, 15–24. DOI: 10.1016/j.ece.2020.05.001.
  • 12. Gani R., Bałdyga J., Biscans B., Brunazzi E., Charpentier J.-C., Drioli E., Feise H., Furlong A., Van Geem K.V., de Hemptinne J.C., ten Kate A.J.B., Kontogeorgis G.M., Manenti F., Marin G.B., Mansouri S.S., Piccione P.M., Povoa A.,Rodrigo M.A., Sarup B., Sorensen E., Udugama I.A.,Woodley J.M., 2020.Amulti-layered viewof chemical and biochemical engineering. Chem. Eng. Res. Des., 155, A133–A145. DOI: 10.1016/j.cherd.2020.01.008.
  • 13. Gillett J.E., 2000a. The education of chemical engineers in the third millennium. European Federation of Chemical Engineering. Available at: https://efce.info/Scientific+groups/Education/Publications/Gillett_+Education+in+ChemEng-p-432.html.
  • 14. Gillett J.E., 2000b. Summary report of the chemical engineering core curriculum project 1993-94. EFCEWORKING PARTY “EDUCATION”. Available at: https://dechema.de/efce_media/Downloads/wpe/wpe_corecurricula.pdf.
  • 15. Gillett J.E., 2001. Chemical engineering education in the next century. Chem. Eng. Technol., 24, 561–570. DOI: 10.1002/1521-4125(200106)24:6%3C561::AID-CEAT561%3E3.0.CO;2-X.
  • 16. Kakkar S., Kwapinski W., Howard C.A., Kumar K.V., 2021. Deep neural networks in chemical engineering classrooms to accurately model adsorption equilibrium data. Educ. Chem. Eng., 36, 115–127. DOI: 10.1016/j.ece.2021. 04.003.
  • 17. Kimmig J., Zechel S., Schubert U.S., 2021. Digital transformation in Materials Science: A paradigm change in material’s development. Adv. Mater., 33, 2170058. DOI: 10.1002/adma.202170058.
  • 18. Liauw M., Sainio T., Bodnar C. (Eds.), 2021. Digitalisation in Chemical Engineering Education and Training, Chem. Eng. Res. Des. Article collection available at: https://www.sciencedirect.com/journal/education-for-chemicalengineers/ special-issue/10D130KPRKZ.
  • 19. Molga E.J., 2003.Neural network approach to support modelling of chemical reactors: problems, resolutions, criteria of application. Chem. Eng. Process. Process Intensif., 42, 675–695. DOI: 10.1016/S0255-2701(02)00205-2.
  • 20. Molga E.J., van Woezik B.A.A., Westerterp K.R., 2000. Neural networks for modelling of chemical reaction systems with complex kinetics: oxidation of 2-octanol with nitric acid. Chem. Eng. Process. Process Intensif., 39, 323–334. DOI: 10.1016/S0255-2701(99)00093-8.
  • 21. Molga E.J., Westerterp K.R., 2013. Principles of chemical reaction engineering. in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002/14356007.b04_005.pub2.
  • 22. Molzahn M., 2004. Chemical engineering education in Europe. Trends and challenges. Chem. Eng. Res. Des., 82, 1525–1532. DOI: 10.1205/cerd.82.12.1525.58032.
  • 23. Pohorecki R., 2003. European Federation of Chemical Engineering: News and events. Chem. Eng. Res. Des., 81, 1406. DOI: 10.1205/cerd.81.10.1406.44733.
  • 24. Pohorecki R., Szebenyi I., 1997. Chemical engineering education and training in central and eastern Europe. 1𝑠𝑡 European Congress of Chemical Engineering. Florence, Italy, 4-7 May 1997.
  • 25. Stankiewicz A., Van Gerven T., Stefanidis G., 2019. Fundamentals of process intensification, Wiley-VCH, Weinheim.
  • 26. Stankiewicz A.I., Yan P., 2019. The missing link unearthed: Materials and process intensification. Ind. Eng. Chem. Res., 58, 9212–9222. DOI: 10.1021/acs.iecr.9b01479.
  • 27. Tracez J., 1994. The development of European chemical engineers. EFCE Newsletter.Chemical Technology Europe, 2, 34-37. 57.Tutzing-Symposion: 100%digital: Uberlebensstrategien fur die Prozessindustrie,Veranstaltung der ProcessNet- Fachgemeinschaft Prozess-, Apparate-, und Anlagentechnik PAAT. Tutzing, 15–18.04.2018.
  • 28. Unnikrishnan S., Donovan J., Macpherson R., Tormey D., 2021. In-process analysis of pharmaceutical emulsions using computer vision and artificial intelligence. Chem. Eng. Res. Des., 166, 281–294. DOI: 10.1016/j.cherd.2020.12.010.
  • 29. Van Gerven T., Stankiewicz A., 2009. Structure, energy, synergy, time – The fundamentals of process intensification. Ind. Eng. Chem. Res., 48, 2465–2474. DOI: 10.1021/ie801501y.
  • 30. Walker W.H., Lewis W.K., McAdams W.H., 1923. Principles of chemical engineering. McGraw-Hill Book Company, New York. DOI: 10.1002/jctb.5000424618.
  • 31. Xiao T., Ni D., 2020. Multiscale modeling and neural network model based control of a plasma etch process. Chem. Eng. Res. Des., 164, 113–124. DOI: 10.1016/j.cherd.2020.09.013
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-63168ef9-9f60-470e-9145-f20c609622a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.