Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The basic principles of construction for a towed buoy with a arc-shaped wing are formulated and substantiated in this paper. The main characteristics of a load-bearing wing in an arched configuration are calculated, and the main dependencies and design features of the arched wing are proposed. A mathematical 3D model is built, and its hydrodynamic characteristics are mathematically modelled in the ANSYS software environment. Experimental investigations of a half-model of an arched wing are conducted in a hydrodynamic tunnel. The model is created by 3D printing, with a Clark-Y chord profile and a tapered wingspan. The wing model is curved in an arc with a radius of 210 mm, covering a 90° sector, and is tested using a special experimental setup in a hydrodynamic tunnel in order to study the hydrodynamic characteristics of oscillating wings. This special experimental setup consists of two main blocks: a two-component strain gauge platform, and an electromechanical drive that provides the harmonic angular oscillations of the wing suspension assembly. The dependencies of the lift and drag coefficients on the angle of attack are determined experimentally. After thorough verification and calibration of the experimental setup, repeated tests are conducted on two geometrically similar wing models. This work was conducted at the Underwater Technology Research Institute of Admiral Makarov National University of Shipbuilding and the Institute of Hydromechanics of the National Academy of Sciences of Ukraine, as part of the development of modern underwater technology prototypes. The results will be integrated into the curricula of the Admiral Makarov National Shipbuilding University.
Czasopismo
Rocznik
Tom
Strony
142--149
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine
autor
- Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine
autor
- Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine
autor
- Institute of Hydromechanics, Kyiv, Ukraine
autor
- Institute of Hydromechanics, Kyiv, Ukraine
autor
- Institute of Hydromechanics, Kyiv, Ukraine
Bibliografia
- 1. Blintsov OV, Sirivchuk AS. Kontseptsiia robotyzovanoho monitorynhu pidvodnoho seredovyshcha na osnovi zastosuvannia pryviaznykh pidvodnykh aparativ // East European Journal of Advanced Technologies – Kharkiv. №6/3(72), 2014. – С. 16-21.
- 2. Sun Q, Xu S, Sun T, Lu F, Dong P, Chang J. Design and experiment of a long range autonomous underwater vehicle for ocean acoustic data observation. Polish Maritime Research 2025, Vol. 32, no. 1, pp. 67-70. https://doi.org/10.2478/pomr-2025-0006.
- 3. Zhao Q, Yang T, Tang G, Yang Y, Luan Y, Wang G, Wan T, Xu M, Li S, Xie G. Hierarchical model for an AUV swarm with a leader. Polish Maritime Research 2025, Vol. 32, no. 1, pp. 71-80. https://doi.org/10.2478/pomr-2025-0007.
- 4. Blintsov VS, Nadtochyi AV. Humanitarne rozminuvannia milkovodnykh akvatorii: tekhnolohii ta robototekhnichne zabezpechennia. /”Shipbuilding and maritime infrastructure”, 2024. Release №1(18). – С. 4-10. DOI https://doi.org/10.15589/smi2024.1(18).01.
- 5. Blintsov V, Maidaniuk P, Sirivchuk A. Improvement of technical supply of projects of robotized monitoring of underwater conditions in shallow water areas. EUREKA: Physics and Engineering 2019, no. 3, pp. 41-49. DOI: 10.21303/2461-4262.2019.00893.
- 6. Chen G, Chen W, Wang Z, Guo T, Xia X, Xu L. Design and Dynamic Performance Research of Underwater Inspection Robots. Wireless Communications and Mobile Computing. Volume 2022, Article ID 3715514, 13 pages. https://doi.org/10.1155/2022/3715514.
- 7. Nishida Y, Kojima J, Ito Y, Tamura K, Sugimatsu H, Kim K. Development of an autonomous buoy system for AUV. In OCEANS 2015, Genova, Italy : IEEE. – 18-21 May 2015, Electronic ISBN:978-1-4799-8736-8. DOI: 10.1109/OCEANS-Genova.2015.7271614.
- 8. Underwater Communication. https://waterlinked.com/applications/underwater-communication.
- 9. Talebi M, Mahmud S, Khalifa A, Jahidul Islam M. BlueME: Robust underwater robot-to-robot communication using compact magnetoelectric antennas. Department of ECE, University of Florida, USA. https://www.researchgate.net/publication/385823509_BlueME_Robust_Underwater_Robot-to-Robot_Communication_Using_Compact_Magnetoelectric_Antennas.
- 10. Radio Buoy. Gaymarine Electronic Products. https://www.gaymarine.it/en/accessories/radiobuoy.
- 11. Pranddtl L. Gidroaeromekhanika. – Izhevsk : Research Center “Regular and Chaotic Dynamics”. 2000.
- 12. Kitaev N. Samoleti s arochnim krilom. URL: http://savenergy.info/page/arched-wing-aircraft/.
- 13. Slizhevskii NB, Korol YuM, Sokolik MG. Gidrodinamicheskii raschet samokhodnikh podvodnikh apparatov: Uchebnoe posobie. – Nikolaev : USMTU. 2000.
- 14. Kashafutdinov ST, Lushin VN. Atlas aerodinamicheskikh kharakteristik krilovikh profilei. –Siberian Scientific Research Institute of Aviation named after S.A. Chaplygin. 1994.
- 15. Kumar K, Zindani D, Roy AK. Working with ANSYS: A tutorial approach. IK International; 2017.
- 16. Madenci E, Guven I. Finite element method and applications in engineering using ANSYS. Springer London; 2015.
- 17. Kayan VP, Pyatetskii VE. Biogidrodinamicheskaya ustanovka zamknutogo tipa dlya issledovaniya gidromekhaniki plavaniya morskikh zhivotnikh. // Bionics, Kyiv, rel. 5. 1971.
- 18. Yegorov VI. Podvodnie buksiruemie sistemi. - Leningrad: Shipbuilding . 1981.
- 19. Korobov VI. Hydrodynamics of oscillating wing on the pitch angle. Proceedings of the National Aviation University, N2(71), 2017, pp. 70-75. DOI: 10.18372/2306-1472.71.11749.
- 20. Ship Models. ITTC Recommended Procedures and Guidelines No. 7.5-01-01-01, 26th ITTC 2011. https://ittc.info/media/1201/75-01-01-01.pdf.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-6315db21-a79f-4376-9687-f8910640d0dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.