PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mineralogy and in situ S and Pb isotope characteristics of ore minerals from polymetallic mineralization in the Gierczyn-Przecznica area, SW Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Chlorite-mica-quartz schist in the Gierczyn-Przecznica area in SW Poland contains polymetallic ores which were the source of tin and cobalt in the past. This mineralogical study revealed the presence of silver-bearing minerals including members of the tetrahedrite (Ag <3 apfu) and freibergite series (3 < Ag < 8 apfu), galena (0.26–1.48 wt.% Ag), and a phase with the chemical composition of Te-rich canfieldite Ag8Sn(S,Te)6. In Przecznica Sn-sulphides are represented by stannite while cobaltite is the most abundant host for cobalt, followed by Co-bearing arsenopyrite. Glaucodot, ullmannite and members of the löllingite-rammelsbergite solid-solution series (Fe,Ni,Co)As2 also contain cobalt but are scarce in the samples. An exposure in the “Psi Grzbiet” area is characterized by the presence of Ag, Ni, Sb and Te minerals accompanied by very small amounts of As-bearing phases (represented by arsenopyrite) while the mineralogical composition in the Przecznica area is characterized by an abundance of As phases and a lack of Sb minerals. Sulphur isotopes of sulphides from Przecznica are heavier than in most deposits related to the Karkonosze Granite intrusion, while their Pb isotope signature in galena suggests an Early Paleozoic pre-Variscan affinity rather than a Variscan one.
Rocznik
Strony
art. no. 10
Opis fizyczny
Bibliogr. 58 poz., fot., map., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Geological Survey of Finland, Vuorimiehentie 2K 02150 Espoo, Finland
  • AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
  • AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Armistead, S.E., Eglington, B.M., Pehrsson, S.J., 2021. PbIso: an R package and web app for calculating and plotting Pb isotope data. EarthArXiv. https//doi.org/10.31223/X56G84
  • 2. Berendsen, P., Speczik, S., Wiszniewska, J., 1987. Sulphide geochemical studies of the stratiform tin deposits in the Stara Kamienica Chain (SW Po land). Archiwum Mineralogiczne, 42: 31-42.
  • 3. Bielicki, K.H., Tischendorf, G., 1991. Lead isotope and Pb-Pb model age determinations of ores from Central Europe and their metallogenetic interpretation. Contributions to Mineralogy and Petrology, 106: 440-461. https://doi.org/10.1007/BF00321987
  • 4. Borkowska, M., Hameurt, J., Vidal, P., 1980. Ori gin and age of Izera gneisses and Rumburk granites in the Western Sudetes. Acta Geologica Polonica, 30: 121-146.
  • 5. Chen, L., Wang, Z., Yan, Z., Gong, J., Ma, S., 2018. Zircon and cassiterite U-Pb ages, petrogeochemistry and metallogenesis of Sn deposits in the Sibao area, northern Guangxi: constraints on the Neoproterozoic granitic magmatism and related Sn mineralization in the western Jiangnan Orogen, South China. Mineralogy and Petrology, 112: 437-463. https://doi.org/10.1007/s00710-018-0554-2
  • 6. Cook, N.J., Dudek, K., 1994. Mineral chemistry and metamorphism of garnet-chlorite-mica schists associated with cassiterite-sulphide-mineralisation from the Kamienica Range, Izera Mountains, SW Poland. Chemie der Erde, 54: 1-32.
  • 7. Dill, H. G., 1989. Metallogenetic and geodynamic evolution in the Central European Variscides - a pre-well site study for the German Continental Deep Drilling Programme. Ore Geology Reviews, 4: 279-304. https://doi.org/10.1016/0169-1368(89)90007-3.
  • 8. Domańska-Siuda, J., Słaby, E., Szuszkiewicz, A., 2019. Ambiguous isotopic and geochemical signatures resulting from limited melt interactions in a seemingly composite pluton: a case study from the Strzegom-Sobótka Massif (Sudetes, Poland). International Journal of Earth Sciences, 108: 931-962. https://doi.org/10.1007/s00531-019-01687-w
  • 9. Foltyn, K., Erlandsson, V.B., Kozub-Budzyń, G.A., Melcher, F., Piestrzyński, A., 2020. Indium in polymetallic mineralisation at the Gierczyn mine, Karkonosze-Izera Massif, Poland: results of EPMA and LA-ICP-MS investigations. Geological Quarterly, 64 (1): 74-85. https//doi.org/10.7306/gq.1516
  • 10. Gilbert, S.E., Danyushevsky, L.V., Rodermann, T., Shimizu, A., Gurenko, A., Meffre, S., Thomas, H., Large, R.R., Death, D., 2014. Optimisation of laser parameters for the analysis of sulphur isotopes in sulphide minerals by laser ablation ICP-MS. Journal of Analytical Atomic Spectrometry, 29: 1042-1051. https://doi.org/10.1039/C4JA00011K
  • 11. Halla, J., 2018. Pb isotopes - a multi-function tool for assessing tectonothermal events and crust-mantle recycling at late Archaean convergent margins. Lithos, 320: 207-221. https://doi.org/10.1016/j.lithos.2018.08.031
  • 12. Höhndorf, A., Dill, H., 1986. Lead isotope studies of strata-bound, vein-type, and unconformity-related Pb, Sb, and Bi ore mineralizations from the western edge of the Bohemian Massif (FR Germany). Mineralium Deposita, 21: 329-336. https://doi.org/10.1007/BF00204353
  • 13. Járóka, T., Seifert, T., 2015. Characterization of the hydrothermal Sn-polymetallic “Felsitzone” mineralization of Großschirma, Freiberg mining district, Saxony, Germany. Mineral resources in a sustainable world. 13th SGA Biennial Meeting, 24-27 August 2015, Nancy, France, 2: 773-776.
  • 14. Jaskólski, S., 1948. Tin ore deposit in Gerbichy (Gieren) in Lower Silesia (preliminary report) (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 42: 1-22.
  • 15. Jaskólski, S., Mochnacka, K., 1959. Tin deposits at Gierczyn in Isera Mountains, Lower Silesia an attempt of elucidation their origin. Archiwum Mineralogiczne, 22: 17-106.
  • 16. Kołodziejczyk, J., Pršek, J., Voudouris, P.C., Melfos, V., 2017. Bi-sulphotellurides associated with Pb-Bi-(Sb ±Ag, Cu, Fe) sulphosalts: an example from the Stan Terg deposit in Kosovo. Geologica Carpathica, 68: 366-381. https://doi.org/10.1515/geoca-2017-0025
  • 17. Lehmann, B., Schneider, H.J., 1981. Strata-bound tin deposits. In: Handbook of Strata-bound and Stratiform Ore Deposits (eds. K.H. Wolf): 743-771. Elsevier.
  • 18. Linnemann, U., Gehmlich, M., Tichomirowa, M., Buschmann, B., Nasdala, L., Jonas, P., Lützner, H., Bombach, K., 2000. From Cadomian subduction to Early Palaeozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). Geological Society Special Publications, 179: 131-153. https://doi.org/10.1144/GSL.SP.2000.179.01.10
  • 19. Liu, J., Chen, W., Liu, Q., 2018. Sb-Bi alloys and Ag-Cu-Pb-Sb-Bi sulphosalts in the Jialong Cu-Sn deposit in North Guangxi, South China. Minerals, 8: 26. https://doi.org/10.3390/min8010026
  • 20. Madziarz, M., Sztuk, H., 2008. Kopalnia “Gierczyn” - zapomniany epizod w historii górnictwa rud Ziem Zachodnich (in Polish). Dzieje Górnictwa - element europejskiego dziedzictwa kultury, (eds. P.P. Zagożdżon and M. Madziarz): 195-212, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław.
  • 21. Małek, R., Mikulski, S.Z., 2021. A rare indium-bearing mineral (Zn-In-Cu-Fe sulphide) from the Stara Kamienica Schist Belt (Sudetes, SW Poland). Geological Quarterly, 65 (1): 7. https://doi.org/10.7306/gq.1572
  • 22. Mayer, W., Jędrysek, M.O., Górka, M., Drzewicki, W., Mochnacka, K., Pieczka, A., 2012. Preliminary results of sulphur isotope studies on sulphides from selected ore deposits and occurrences in the Karkonosze-Izera Massif (the Sudety Mts., Poland). Mineralogia, 43: 213-222.
  • 23. Mazur, S., Aleksandrowski, P., 2001. The Tepla (?)/Saxothuringian suture in the Karkonosze-Izera Massif, western Sudetes, Central European Variscides. International Journal of Earth Sciences, 90: 341-360. https://doi.org/10.1007/s005310000146
  • 24. Mazur, S., Kryza, R., 1996. Superimposed compressional and extensional tectonics in the Karkonosze-Izera Block, NE Bohemian Massif. In: Basement Tectonics 11 Europe and Other Regions (eds. O. Oncken and C. Janssen): 51-66. Springer, Dordrecht.
  • 25. Mazur, S., Aleksandrowski, P., Kryza, R., Oberc-Dziedzic, T., 2006. The Variscan orogen in Poland. Geological Quarterly, 50 (1): 89-118.
  • 26. Mazur, S., Aleksandrowski, P., Szczepański, J., 2010. Outline structure and tectonic evolution of the Variscan Sudetes (in Polish with English summary). Przegląd Geologiczny, 58: 133-145.
  • 27. Mederski, S., Pršek, J., Dimitrova, D., Hyseni, B., 2021. A combined EPMA and LA-ICP-MS investigation on Bi-Cu-Au mineralization from the Kizhnica Ore Field (Vardar Zone, Kosovo). Minerals, 11: 1223. https://doi.org/10.3390/min11111223
  • 28. Michniewicz, M., Bobiński, W., Siemiątkowski, J., 2006. The mineralization in the middle part of the Stara Kamienica Schist Belt (Western Sudetes) (in Polish with English summary). Prace Państwowego Instytutu Geologicznego, 185: 5-136.
  • 29. Mikulski, S.Z., 2007. Metal ore potential of the parent magma of granite - the Karkonosze massif example. Granitoids in Poland. Archivum Mineralogiae Monograph 1: 123-145.
  • 30. Mikulski, S.Z., 2010. The characteristic and genesis of the gold-bearing arsenic polymetallic mineralization in the Czarnów deposit (Western Sudetes) (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 439: 303-320.
  • 31. Mikulski, S.Z., Małek, R., 2020. Rudy cyny (tin ores) (in Polish). In: Bilans perspektywicznych zasobów kopalin Polski wg stanu na 31.12.2018 r. (eds. K. Szamałek, M. Szuflicki and W. Mizerski): 162-167. PIG-PIB, Warszawa.
  • 32. Mikulski, S.Z., Stein, H.J., 2012. The age of molybdenites in Poland in the light of Re-Os isotopic studies (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 452: 199-216.
  • 33. Mikulski, S.Z., Krzemińska, E., Czupyt, Z., Williams, I.S., 2015. Sulphur isotope measurements of sulphide minerals from the polymetallic ore deposits in the Sudetes, using the SHRIMP IIe/MC ion microprobe (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 464: 61-78.
  • 34. Mikulski, S.Z., Williams, I.S., Stein, H.J., Wierchowiec, J., 2020. Zircon U-Pb dating of magmatism and mineralizing hydrothermal activity in the Variscan Karkonosze Massif and its eastern metamorphic cover (SW Poland). Minerals, 10: 787. https://doi.org/10.3390/min10090787
  • 35. Mochnacka, K., Oberc-Dziedzic, T., Mayer, W., Pieczka, A., 2015. Ore mineralization related to geological evolution of the Karkonosze-Izera Massif (the Sudetes, Poland) - towards a model. Ore Geology Reviews, 64: 215-238. https://doi.org/10.1016/j.oregeorev.2014.07.001
  • 36. Molnár, F., O'Brien, H., Lahaye, Y., Käpyaho, A., Sorjonen-Ward, P., Hyodo, H., Sakellaris, G., 2016. Signatures of multiple mineralization processes in the Archean orogenic gold deposit of the Pampalo mine, Hattu schist belt, eastern Finland. Economic Geology, 111: 1659-1703. https://doi.org/10.2113/econgeo.111.7.1659
  • 37. Molnár, F., Middleton, A., Stein, H., O'Brien, H., Lahaye, Y., Huhma, H., Johanson, B., 2018. Repeated syn- and post- orogenic gold mineralization events between 1.92 and 1.76 Ga along the Kiistala Shear Zone in the Central Lapland Greenstone Belt, northern Finland. Ore Geology Reviews, 101: 936-959. https://doi.org/10.1016/j.oregeorev.2018.08.015
  • 38. Müller, W., Shelley M., Miller, P., Broude, S., 2009. Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. Journal of Analytical Atomic Spectrometry, 24: 209-214. https://doi.org/10.1039/B805995K
  • 39. Niederschlag, E., Pernicka, E., Seifert, T., Bartelheim, M., 2003. The determination of lead isotope ratios by multiple collector ICP MS: a case study of Early Bronze Age artefacts and their possible relation with ore deposits of the Erzgebirge. Archaeometry, 45: 61-100. https://doi.org/10.1111/1475-4754.00097
  • 40. Oberc-Dziedzic, T., Pin, C., Kryza, R., 2005. Early Palaeozoic crustal melting in an extensional setting: petrologi cal and Sm- Nd evidence from the Izera granite-gneisses, Polish Sudetes. International Journal of Earth Sciences, 94: 354-368. https://doi.org/10.1007/s00531-005-0507-y
  • 41. Oberc-Dziedzic, T., Kryza, R., Pin, C., Mochnacka, K., Larionov, A., 2009. The orthogneiss and schist complex of the Karkonosze-Izera massif (Sudetes, SW Poland): U-Pb SHRIMP zircon ages, Nd-isotope systematics and protoliths. Geologia Sudetica, 41: 3-24.
  • 42. Oberc-Dziedzic, T., Kryza, R., Mochnacka, K., Larionov, A., 2010. Ordovician passive continental margin magmatism in the Central-European Variscides: U-Pb zircon data from the SE part of the Karkonosze-Izera Massif, Sudetes, SW Poland. In ternational Journal of Earth Sciences, 99: 27-46. https://doi.org/10.1007/s00531-008-0382-4
  • 43. Ohmoto, H., 1972. Systematics of sulphur and carbon isotopes in hydrothermal ore deposits. Economic Geology, 67: 551-578, https://doi.org/10.2113/gsecongeo.67.5.551
  • 44. Ostendorf, J., Henjes-Kunst, F., Seifert, T., Gutzmer, J., 2019. Age and genesis of polymetallic veins in the Freiberg district, Erzgebirge, Germany: constraints from radiogenic isotopes. Mineralium Deposita, 54: 217-236. https://doi.org/10.1007/s00126-018-0841-1
  • 45. Piestrzyński, A., Mochnacka, K., 2003. Discussion on the sulphide mineralization related to the tin-bearing zones of the Kamienica schists belt (Western Sudety Mountains, SW Poland) (in Polish with English summary). In: The Western Sudetes: From Vendian to Quaternary (eds. W. Ciężkowski, J. Wojewoda and A. Żelaźniewicz): 169-182. WIND, Wrocław
  • 46. Pršek, J., Ozdín, D., Sejkora, J., 2008. Eclarite and associated Bi sulfosalts from the Brezno-Hviezda occurrence (Nízke Tatry Mts, Slovak Republic). Neues Jahrbuch für Mineralogie Abhandlungen, 185: 117. https://doi.org/10.1127/0077-7757/2008/0112
  • 47. Romer, R.L., Kroner, U., Schmidt, C., Legler, C., 2022. Mobilization of tin during continental subduction-accretion processes. Geology, 50: 1361-1365. https://doi.org/10.1130/G50466.1
  • 48. Seifert, T., Niederschlag, E., Pernicka, E., Fiedler, F., 2001. Lead isotope pilot study from ore deposits in the Erzgebirge, Germany, and surrounded areas by multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). In: Mineral Deposits at the Beginning of the 21st Century (ed. A. Piestrzyński): 1095-1098. CRC Press.
  • 49. Speczik, S., Wiszniewska, J., 1984. Some comments about stratiform tin deposits in the Stara Kamienica Chain (southwestern Poland). Mineralium Deposita, 19: 171-175. https://doi.org/10.1007/BF00199781
  • 50. Stacey, J.T., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26: 207-221. https://doi.org/10.1016/0012-821X(75)90088-6
  • 51. Stevenson, R.K., Martin, R.F., 1986. Implications of the presence of amazonite in the Broken Hill and Geco metamorphosed sulphide deposits. Canadian Mineralogist, 24: 729-745.
  • 52. Townsend, A.T., Yub, Z., McGoldrick, P., Hutton, J.A., 1998. Precise lead isotope ratios in Australian galena samples by high resolution inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 13: 809-813. https://doi.org/10.1039/A801397G
  • 53. Turniak, K., Mazur, S., Domańska-Siuda, J., Szuszkiewicz, A., 2014. SHRIMP U-Pb zircon dating for granitoids from the Strzegom-Sobótka Massif, SW Poland: constraints on the initial time of Permo-Mesozoic lithosphere thinning beneath Central Europe. Lithos, 208: 415-429. https://doi.org/10.1016/j.lithos.2014.09.031
  • 54. Verhoef, E.V., Dijkema, G.P., Reuter, M.A., 2004. Process knowledge, system dynamics, and metal ecology. Journal of Industrial Ecology, 8: 23-43. https://doi.org/10.1162/1088198041269382
  • 55. Yue, Z.H., Bai, L.A., Hu, R.G., Wu, J., Dai, Y., Zhou, S.Y., Feng, Z.H., Xu, C., Zhao Z.X., Liu, X.J., 2022. Caledonian tin mineralization in the Jiuwandashan area, Northern Guangxi, South China. Minerals, 12: 843. https://doi.org/10.3390/min12070843.
  • 56. Zartman, R.E., Doe, B.R., 1981. Plumbotectonics - the model. Tectonophysics, 75: 135-162. https://doi.org/10.1016/0040-1951(81)90213-4
  • 57. Żelaźniewicz, A., Nowak, I., Achramowicz, S., Czapliński, W., Ciężkowski, A., Wojewoda, J., 2003. The northern part of the Izera-Karkonosze Block: a passive margin of the Saxothuringian terrane (in Polish with English summary). In: The Western Sudetes: From Vendian to Quaternary (eds. W. Ciężkowski, J. Wojewoda and A. Żelaźniewicz): 17-32. WIND, Wrocław.
  • 58. Żelaźniewicz, A., Fanning, C.M., Achramowicz, S., 2009. Refining the granite, gneiss and schist interrelationships within the Lusatian-Izera Massif, West Sudetes, using SHRIMP U-Pb zircon analyses and new geologic data. Geologia Sudetica, 41: 67-84.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-630a8b15-04c6-4e96-9799-d3638b67e1e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.