Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Polymethylmethacrylate (PMMA) is widely used in biomechanics and civil engineering for its properties. While various fillers have been studied to enhance mechanical properties of PMMA, the impact of sand as a filler has been less explored. This study investigates the effects of varying sand content on the mechanical properties and workability of PMMA-based resin composites, assessing their suitability for biomechanical applications. Specimen types with different sand contents (0%, 26%, 30%, and 52%) were examined through the cone spread test for workability, uniaxial tension tests for mechanical properties, and the finite element analysis (FEA) to simulate material behavior. Results were validated against numerical models to evaluate consistency. Adding sand significantly increased the Young modulus by 108%, 174%, and 286% for sand contents of 26%, 30%, and 52%, respectively, while decreasing the Poisson ratio. However, increased sand content reduced workability, highlighting a trade-off between mechanical strength and ease of handling. Numerical simulations, covering the sand volume ratio from 1% to 52% in 1% increments, showed that predictive accuracy varied: differences were up to 20%, for volume ratio up to 30%, while for contents above 30%, the discrepancies between model predictions and experimental data were below 5%. Incorporating sand into PMMA resin enhances its stiffness and suitability for biomechanical specimen testing. Sand-filled PMMA composites show promise for advanced engineering applications, though further optimization is needed to balance workability and mechanical strength.
Czasopismo
Rocznik
Tom
Strony
53--66
Opis fizyczny
Bibliogr. 37 poz., rys., tab., wykr.
Twórcy
autor
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
autor
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
autor
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
autor
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
autor
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
Bibliografia
- 1. A. Boger, P. Heini, M. Windolf, E. Schneider, Adjacent vertebral failure after vertebroplasty: a biomechanical study of low-modulus PMMA cement, European Spine Journal, 16, 2118–2125, 2007, https://doi.org/10.1007/s00586-007-0473-0.
- 2. T. Thielen, S. Maas, A. Zuerbes, D. Waldmann, J. Kelm, Mechanical material properties of polymethylmethacrylate (PMMA) for medical applications, Materials Testing, 51, 203–209, 2009, https://doi.org/10.3139/120.110029.
- 3. R.Q. Frazer, R.T. Byron, P.B. Osborne, K.P. West, PMMA: An essential material in medicine and dentistry, Journal of Long-Term Effects of Medical Implants, 15, 629–639, 2005, https://doi.org/10.1615/JLongTermEffMedImplants.v15.i6.60.
- 4. G.O. Martínez-Barrera, O. Gencel, J.M.L. Reis, Civil engineering applications of polymer composites, International Journal of Polymer Science, 1–2, 2016, https://doi.org/10.1155/2016/3941504.
- 5. U. Ali, K.J.Bt. A. Karim, N.A. Buang, A Review of the properties and applications of poly(methyl methacrylate) (PMMA), Polymer Reviews, 55, 678–705, 2015, https://doi.org/10.1080/15583724.2015.1031377.
- 6. A. Hazim, H.M. Abduljalil, A. Hashim, Structural, spectroscopic, electronic and optical properties of novel platinum doped (PMMA/ZrO2) and (PMMA/Al2O3) nanocomposites for electronics devices, Transactions on Electrical and Electronic Materials, 21, 550–563, 2020, https://doi.org/10.1007/s42341-020-00210-2.
- 7. R.Y. Hong, H.P. Fu, Y.J. Zhang, L. Liu, J. Wang, H.Z. Li, Surface-modified silica nanoparticles for reinforcement of PMMA, Journal of Applied Polymer Science, 105, 2176–2184, 2007, https://doi.org/10.1002/app.26164.
- 8. G.R. Lashkaripour, R. Ajalloeian, Determination of silica sand stiffness, Engineering Geology, 68, 225–236, 2003, https://doi.org/10.1016/S0013-7952(02)00229-6.
- 9. J. Thole, C. Beckermann, Measurement of elastic modulus of PUNB bonded sand as a function of temperature, International Journal of Metalcasting, 4, 7–18, 2010, https://doi.org/10.1007/BF03355499.
- 10. Y. Lu, H. Wang, A.A. Luo, K. Ripplinger, Process simulation and experimental validation of resin-bonded silica sand mold casting, American Foundry Society Transactions, 125, 215–220, 2017.
- 11. M.M. Islam, M.A. Kabir, H. Kabir, F. Ahmed, M.A. Gafur, Physical, mechanical and thermal properties of sand reinforced polyester resin composite , International Letters of Chemistry, Physics and Astronomy, 56, 99–103, 2015, https://doi.org/0.18052/www.scipress.com/ILCPA.56.99.
- 12. H. Bargaoui, F. Azzouz, D. Thibault, G. Cailletaud, Thermomechanical behavior of resin bonded foundry sand cores during casting, Journal of Materials Processing Technology, https://doi.org/10.1016/j.jmatprotec.2017.03.002.
- 13. G.R. Chate, G.C.M. Patel, R.M. Kulkarni, P. Vernekar, A.S. Deshpande, M.B. Parappagoudar, Study of the effect of nano-silica particles on resin-bonded moulding sand properties and quality of casting, Silicon, 10, 1921–1936, 2018, https://doi.org/10.1007/s12633-017-325 9705-z.
- 14. D. Yemam, B.-J. Kim, J.-Y. Moon, C. Yi, Mechanical properties of epoxy resin mortar with sand washing waste as filler, Materials, 10, 246, 2017, https://doi.org/0.3390/ma10030246.
- 15. C.A. Anagnostopoulos, T.T. Papaliangas, Experimental investigation of epoxy resin and sand mixes, Journal of Geotechnical and Geoenvironmental Engineering, 138, 841–9, 2012, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000648.
- 16. E. Ozeren Ozgul, M.H. Ozkul, Effects of epoxy, hardener, and diluent types on the workability of epoxy mixtures, Construction and Building Materials, 158, 369–77, 2018, https://doi.org/10.1016/j.conbuildmat.2017.10.008.
- 17. S.F.E. Mattucci, D.S. Cronin, A method to characterize average cervical spine ligament response based on raw data sets for implementation into injury biomechanics models , Journal of the Mechanical Behaviour of Biomedical Materials, 41, 251–60, 2015, https://doi.org/10.1016/j.jmbbm.2014.09.023.
- 18. R. Wolny, T. Wiczenbach, A.J. Andrzejewska, J.H. Spodnik, Mechanical response of human thoracic spine ligaments under quasi-static loading: An experimental study, Journal of the Mechanical Behaviour of Biomedical Materials, 151, 106404, 2024, https://doi.org/10.1016/j.jmbbm.2024.106404.
- 19. H.-J. Wilke, A. Herkommer, K. Werner, C. Liebsch, In vitro analysis of the segmental flexibility of the thoracic spine, PLOS One, 12, 5, e0177823, 2017, https://doi.org/10.1371/journal.pone.0177823.
- 20. J.J. Costi, E.H. Ledet, G.D. O’Connell, Spine biomechanical testing methodologies: The controversy of consensus vs scientific evidence, JOR Spine 202, 4, 1, 2021, https://doi.org/10.1002/jsp2.1138.
- 21. R. Higuchi, T. Yokozeki, K. Nishida, C. Kawamura, T. Sugiyama, T. Miyanaga, High-fidelity computational micromechanics of composite materials using image-based periodic representative volume element, Composite Structures, 328, 117726, 2024, https://doi.org/10.1016/j.compstruct.2023.117726.
- 22. J. Qu, M. Cherkaoui, Fundamentals of Micromechanics of Solids, Wiley, 2006, https://doi.org/10.1002/9780470117835.
- 23. V.A. Buryachenko, Micromehcanics of Heterogenous Materials, Springer, Boston, MA, 2007, https://doi.org/10.1007/978-0-387-68485-7.
- 24. S. Yilmaz, An approach for predicting the elastic modulus of heterogeneous materials, Materials and Design, 30, 2938–45, 2009, https://doi.org/10.1016/j.matdes.2009.01.001.
- 25. K. Mazur, M. Krawczuk, L. Dąbrowski, A new finite element with variable Young’s modulus, International Journal for Numerical Methods in Biomedical Engineering, 39, 7, e3712, 2023, https://doi.org/10.1002/cnm.3712.
- 26. D. Gross, T. Seelig, Fracture Mechanics, Springer, Berlin, Heidelberg, 2011, https://doi.org/10.1007/978-3-642-19240-1.
- 27. J. Yvonnet, Computational Homogenization of Heterogeneous Materials with Finite Elements , 258, Springer International Publishing, Cham, 2019, https://doi.org/10.1007/978-3-030-18383-7.
- 28. A. Sabik, M. Rucka, A. Andrzejewska, E. Wojtczak, Tensile failure study of 3D printed 366 PLA using DIC technique and FEM analysis, Mechanics of Materials, 175, 104506, 2022, https://doi.org/10.1016/j.mechmat.2022.104506.
- 29. ASTM F2792–12, Standard terminology for additive manufacturing technologies, ASTM International, 2012.
- 30. Kulzer GmbH, Kulzer Technik 2023, https://kulzer-technik.com/en-kt/en-kt/home/homepage.html.
- 31. PN-EN 196-1:2016-07, Metody badania cementu – Część 1: Oznaczanie wytrzymałości, EN 196-1:2, Polski Komitet Normalizacyjny, 2016.
- 32. PN-EN 13395-1:2004. Wyroby i systemy do ochrony i naprawy konstrukcji betonowych – Metody badań – Oznaczanie urabialności – Część 1: Badanie płynięcia zapraw tiksotropowych , EN 13395-1, 2004.
- 33. P. Heyliger, H. Ledbetter, S. Kim, Elastic constants of natural quartz, Journal of the Acoustical Society of America, 114, 644–50, 2003, https://doi.org/10.1121/1.1593063.
- 34. F.A. Pintar, N. Yoganandan, T. Myers, A. Elhagediab, A. Sances, Biomechanical properties 380 of human lumbar spine ligaments, Journal of Biomechanics, 25, 11, 1351–6, 1992, https://doi.org/10.1016/0021-9290(92)90290-H.
- 35. N. Yoganandan, S. Kumaresan, F.A. Pintar, Geometric and mechanical properties of human cervical spine ligaments, Journal of Biomechanical Engineering, 122, 623–9, 2000, https://doi.org/10.1115/1.1322034.
- 36. J. Chazal, A. Tanguy, M. Bourges, G. Gaurel, G. Escande, M. Guillot, G. Vanneuville, Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction, Journal of Biomechanics, 18, 167–76, 1985, https://doi.org/10.1016/0021-9290(85)90202-7.
- 37. L. Weng, Y. Shen, T. Fan, J. Xu, A study of interface damage on mechanical properties of particle-reinforced composites, Journal of The Minerals, Metals and Materials Society (JOM), 67, 1499–504, 2015, https://doi.org/10.1007/s11837-015-1413-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-630974f3-bdbe-4545-914a-13204d0704db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.