Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Równania dyspersji dla struktur kompozytowych. Cz. 2, Metody wyznaczania krzywych dyspersji
Języki publikacji
Abstrakty
In the first part of the current review, the fundamental assumptions of the theoretical model of elastic waves propagation in multilayered composite material are presented. Next, the equations which describe elastic wave motion in the case of single orthotropic lamina are derived. In the second part of this work, the most commonly used method of determining dispersion curves for multilayered composite material are discussed, namely: the transfer matrix method (TMM), global matrix method (GMM), stiffness matrix method (SMM) and finally the semi-analytical finite element method (SAFE). The first three methods are based on the relationships which are derived in the first part of this review. Moreover, TMM and GMM should be considered numerically unstable in the case of a relatively large product value of wave frequency and the total thickness of the composite plate. However, SMM seems to be unconditionally stable. The last method is based on the finite element approach and it can be used in order to confirm the results obtained using the analytical method. Finally, exemplary dispersion curves are presented. The dispersion curves are determined for the 8-th layer of the composite material, which is made of carbon fiber and epoxy resin. It is assumed that the wave front travels in an arbitrary direction.
W części pierwszej pracy omówiono założenia dotyczące teoretycznego modelu propagacji fal sprężystych w wielowarstwowych materiałach kompozytowych. Następnie wyprowadzono równania opisujące zjawisko propagacji fal sprężystych w pojedynczej warstwie o ortotropowych własnościach mechanicznych. W części drugiej przedstawiono podstawy najczęściej wykorzystywanych metod wyznaczania krzywych dyspersji dla ośrodków wielowarstwowych, a mianowicie: transfer matrix method (TMM), global matrix method (GMM), stiffness matrix method (SMM), a także semi-analytical finite element method (SAFE). Pierwsze trzy podejścia oparte są bezpośrednio na równaniach wyprowadzonych w części pierwszej. Metody TMM oraz GMM uważane są za numerycznie niestabilne w przypadku odpowiednio dużych wartości iloczynu częstotliwości i całkowitej grubości płyty kompozytowej. Natomiast wydaje się, że podejście SMM jest numerycznie bezwarunkowo stabilne. Ostatnia z wymienionych metod oparta jest na metodzie elementów skończonych i można ją efektywnie wykorzystać w celu potwierdzenia wyników otrzymanych przy użyciu poprzednio wymienionych algorytmów. Jako przykład pokazano krzywe dyspersji wyznaczone dla 8-warstwowego materiału kompozytowego wykonanego z włókna węglowego, przy czym założono, że czoło fali porusza się w dowolnie założonym kierunku.
Czasopismo
Rocznik
Tom
Strony
147--153
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
- Cracow University of Technology, Institute of Machine Design, al. Jana Pawła II 37, 31-864 Krakow, Poland
autor
- Cracow University of Technology, Institute of Machine Design, al. Jana Pawła II 37, 31-864 Krakow, Poland
autor
- Cracow University of Technology, Institute of Machine Design, al. Jana Pawła II 37, 31-864 Krakow, Poland
Bibliografia
- [1] Lowe J.S.M., Matrix techniques for modeling ultrasonic waves in multilayered media, IEEE Transactions on Ultrasonics, Ferroelectric and Frequency Control 1995, 42(4), 525-542.
- [2] Thomson W.T., Transmission of elastic waves through a stratified solid medium, Journal of Applied Physics 1950, 21, 89-93.
- [3] Haskell N.A., Dispersion of surface waves on multilayer media, Bulletin of Seismological Society of America 1953, 43, 17-34.
- [4] Nayfeh A.H., The general problem of elastic wave propagation in multilayered anisotropic media, Journal of Acoustic Society of America 1991, 89(4), 1521-1531.
- [5] Hawwa M.A., Nayfeh H.A., The general problem of thermoelastic waves in anisotropic periodically laminated composites, Composites Engineering 1995, 5(12), 1499-1517.
- [6] Giurgiutiu V., Structural Health Monitoring with Piezoelectric Wafer Active Sensors, Elsevier, 2008.
- [7] Castings M., Hosten B., Delta operator technique to improve the Thompson-Haskell method stability for propagation in ultilayered anisotropic plates, Journal of Acoustic Society of America 1994, 95(4), 1931-1941.
- [8] Castings M., Hosten B., Transmission coefficient of multilayered absorbing media. A solution to the numerical limitation of the Thompson-Haskell method. Application to composite materials, Proc. ULTRASONICS 93, 1993.
- [9] Hosten B., Castings M., Transfer matrix of multilayered absorbing and anisotropic media. Measurement and simulations of ultrasonic wave propagation through composite materials, Journal of Acoustic Society of America 1993, 94, 1488-1495.
- [10] Press F., Harkrider D., Seafeldt C.A., A fast convenient program for computation of surface - wave dispersion curves in multilayered media, Bulletin of Seismological Society of America 1961, 51, 495-502.
- [11] Randall M.J., Fast programs for layered half - space problems, Bulletin of Seismological Society of America 1967, 57, 1299-1316.
- [12] Watson T.H., A note on fast computation of Rayleigh wave dispersion in the multilayered elastic half - space, Bulletin of Seismological Society of America 1970, 60, 161-166.
- [13] Knopoff L., A matrix method for elastic waves problems, Bulletin of Seismological Society of America 1964, 43, 431-438.
- [14] Pavlakovic B.N., Leaky Guided Ultrasonic Waves in NDT, Ph.D. dissertation, University of London, 1998.
- [15] Demcenko A., Mazeika L., Calculation of Lamb waves dispersion curves in multilayered planar structure, ULTRAGARSAS 2002, 3(44), 15-17.
- [16] Schwab F.A., Surface - wave dispersion computations: Knopoff's method, Bulletin of Seismological Society of America 1970, 60, 1491-1520.
- [17] Schmidt H., Tango G., Efficient global matrix approach to the computation of synthetic seismograms, Geophysical Journal of Royal Astronomical Society 1986, 84, 331-359.
- [18] Pant S., Laliberte J., Martinez M., Rocha B., Derivation and experimental validation of Lamb wave equations for an n-layered anisotropic composite laminate, Composite Structure 2014, 111, 566-579.
- [19] Pant S., Lamb Wave Propagation and Material Characterization of Metallic and Composite Aerospace Structures for Improved Structural Health Monitoring (SHM), Ph.D. dissertation, Carleton University, Ottawa, Ontario 2014.
- [20] Pavlakovic B., Lowe M., DISPERSE Manual, Imperial College, London 2003.
- [21] Lowe M.J.S., Plate Waves for NDT of Diffusion Bonded Titanium, Ph.D. Dissertation, University of London, 1993.
- [22] Kausel E., Wave propagation in anisotropic layered media, International Journal for Numerical Methods in Engineering 1986, 23, 1567-1578.
- [23] Wang L., Rokhlin S.I., Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media, Ultrasonics 2001, 39, 413-424.
- [24] Rokhlin S.I., Wang L., Stable recursive algorithm for elastic wave propagation in layered anisotropic media: Stiffness matrix method, Journal of Acoustic Society of America 2002, 112, 822-834.
- [25] Rokhlin S.I., Wang L., Ultrasonic waves in layered anisotropic media: characterization of multidirectional composites, International Journal of Solids & Structures 2002, 39, 5529-5545.
- [26] Rokhlin S., Chimeneti D., Nagy P., Physical Ultrasonic of Composites, Oxford University Press, 2011.
- [27] Kamal A., Giurgiutiu V., Stiffness Transfer Matrix Method (STMM) for Stable Dispersion Curves Solution in Anisotropic Composites, Proc. of SPIE 2014, 9064.
- [28] Nelson R.B., Dong S.B., Karla R.B., Vibration and waves in laminated orthotropic cylinders, Journal of Sound and Vibration 1971, 18(3), 429-444.
- [29] Gavric L., Finite element computation of dispersion properties of thin walled waveguides, Journal of Sound and Vibration 1994, 173(1), 113-124.
- [30] Gavric L., Computation of propagative waves in free rail using finite element technique, Journal of Sound and Vibration 1995, 185(3), 531-543.
- [31] Hayashi T., Song W.-J., Rose J.L., Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example, Ultrasonics 2003, 41, 175-183.
- [32] Hayashi T., Tamayama C., Murase M., Wave structure analysis of guided waves in a bar with an arbitrary crosssection, Ultrasonics 2006, 44, 17-24.
- [33] Mazuch T., Wave dispersion modeling anisotropic shells and rods by finite element method, Journal of Sound and Vibration 1996, 198(4), 429-438.
- [34] Mace B.R., Manconi E., Modeling wave propagation in two-dimensional structures using finite element analysis, Journal of Sound and Vibration 2008, 318, 884-902.
- [35] Bartoli I., Di Scalea F.L., Fateh M., Viola E., Modeling guided wave propagation with application to the long-range defect detection in railroad tracks, NDT & E International 2005, 38, 325-334.
- [36] Sorohan S., Constantin N., Gavan M., Anghel V., Extraction of dispersion curves for waves propagating in free complex waveguides by standard finite element codes, Ultrasonics 2011, 51, 503-515.
- [37] Kalkowski M., Piezo-actuated Structural Waves for Delaminating Accretions, Ph.D. dissertation, University of Southampton, 2015.
- [38] Brillouin L., Wave Propagation in Periodic Structures, Dover, New York 1953.
- [39] Orris R.M., Petyt M., A finite element study on harmonic wave propagation in periodic structures, Journal of Sound and Vibration 1974, 33, 223-236.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-630780fb-3af3-48c2-9949-2593ee9ba425