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Abstract Modelling vibrations of piezoelectric transducers has been a topic  discussed in the literature for 
many decades. The first models - so-called one-dimensional - describe the vibrations only near operating 
frequency and near its harmonics. Attempts to introduce two-dimensional models were related to the 
possibility of one transducer working at several frequencies, including both thickness vibrations and those 
resulting from the transducer horizontal dimensions. In recent decades, thanks to the use of the finite 
element method and its derivatives, and the progress related to the increase in processor speed and 
memory availability, the implementation of models based on three-dimensional modelling is possible using 
software on personal computers. As the implementation of finite element method algorithms is 
characterized by high complexity, several professional software packages have been created on the 
commercial market, among which only a few implement the piezoelectric equations. In this context, this 
article presents how to use open source software along with developed programming language for intuitive 
definition of piezoelectric equations and its solution. 
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1. Introduction 

The problem of modelling vibration of piezoelectric transducers is well recognized in the literature. The 
number of authors have proposed different modifications of the equivalent circuit model of piezoelectric 
ceramic element vibrating in thickness mode as proposed by Mason in his early works in 1948 (i.e. [1-5]) . 
They include additional elements in the form of complex coefficients that allow modelling some effects 
observed in measurements, that maybe interpreted as dielectric, electro-mechanical and mechanical losses. 
Recently, due to numerical implementations of partial differential equations solvers it is relatively easy to 
model vibrations of transducer composed from any number of piezoelectric elements by finite element 
methods. Finite element analysis helps predict the behaviour of products affected by many physical effects, 
including: mechanical stress, mechanical vibration, fatigue, motion, heat transfer, fluid flow, electrostatics, 
plastic injection moulding etc. 

FEM-based commercial modelling software is a result of last two decades of development in software 
engineering. They implement internally variety of PDE allowing for solution of multiphysics problems (i.e. 
COMSOL Multiphysics® - [6], ANSYS® - [7]). As not all FEM software implements piezoelectric problem due 
to its complexity several also research oriented solutions (i.e. Atila® [8], FEMP® [9]) has been developed. 
Additionally, especially in last decade, due to popularity of open software idea, several solutions appeared 
like OpenFoam® or FreeFEM® that allows for user-defined scripting. As they require special knowledge of 
programming, in the following section FreeFEM language is introduced and examined from perspective of 
application in modelling of vibration of piezoelectric devices. 

2. FreeFEM and its language 

FreeFEM is a popular 2D and 3D partial differential equations (PDE) solver used by thousands of 
researchers across the world [10]. It runs on macOS, Linux, Windows operating systems and have also 
distribution on Docker virtualized platform. It allows easily implement user-defined physics modules using 
the provided FreeFEM language and offers a large list of finite elements, like the Lagrange, Taylor-Hood, 
etc., usable in the continuous and discontinuous Galerkin method framework. FreeFEM has it own internal 
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mesher that is compatible with the best open-source mesh and visualization software like Tetgen, Gmsh, 
Mmg and ParaView.  It is written in C++ to optimize for speed, FreeFEM is interfaced with the other popular 
solvers like mumps, PETSc and HPDDM. With Qarnot's HPC platform, 7 lines of python code is all you need 
to run a FreeFEM simulation in the cloud. It is also available on Rescale's ScaleX® Pro. Rescale offers 
academic users up to 500 core hours on their HPC cloud. 

The FreeFEM language is typed, polymorphic and re-entrant with macro generation. It is a C++ idiom 
with something that is more akin to LaTeX and rarely generates an internal finite element array. This was 
adopted for speed and consequently FreeFEM could be hard to beat in terms of execution speed, except for 
the time lost in the interpretation of the language. The development cycle includes the following steps: 
modelling, programming and code running. In modelling phase from strong forms of PDE to weak forms, 
one must know the variational formulation and should also have an eye on the reusability of the variational 
formulation so as to keep the same internal matrices. Programming in FreeFEM language is simply done 
using any text editor. Finally the code in terminal mode or by integrated environment or even online in a 
webpage. The extremely versatile plot function inserted directly in code allows for displaying while 
FreeFEM is running. FreeFEM has internal pre-built physics for several PDE problems including 
incompressible Navier-Stokes, Lamé equations (linear elasticity), Neo-Hookean, Mooney-Rivlin (nonlinear 
elasticity), thermal diffusion, thermal convection, thermal radiation, magnetostatics, electrostatics and 
fluid-structure interaction.  As it does not contain pre-build support for piezoelectric equations the paper 
verifies its usefulness for defining and solving theoretical equations for vibration of piezoelectric circular 
transducer.   

 

3. Case study: vibrations of circular piezoelectric disc 

When a time-harmonic solution is considered, the piezoelectric equations governing displacement u, stress 
tensor T, electric displacement field D, strain tensor S and electrical field E components are given (using 
Einstein’s compact notation, that implies summation and with comma denoting derivation operator) as: 

 

−𝜔2𝜌𝑝𝑢𝑖 = 𝑇𝑖𝑗,𝑗

𝐷𝑖,𝑖 = 0

𝑇𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙
𝐸 𝑆𝑘𝑙(𝑢) − 𝑒𝑘𝑖𝑗𝐸𝑘(𝜙)

𝐷𝑖 = 𝑒𝑖𝑘𝑙𝑆𝑘𝑙(𝑢) + 𝜖𝑖𝑘
𝑆 𝐸𝑘(𝜙)

     (1) 

 

where 𝜌𝑝 is the density of piezoelectric material, 𝑐𝑖𝑗𝑘𝑙
𝐸  represents 3x3x3x3 elastic tensor, 𝑒𝑘𝑖𝑗  represents 

3x3x3 piezoelectric tensor, 𝜖𝑖𝑗
𝑆  – 3x3 dielectric matrix, 𝑆𝑘𝑙(𝑢) = (𝑢𝑘,𝑙 + 𝑢𝑙,𝑘)/2 and 𝐸𝑘(𝜙) = −𝜙,𝑖 . Indices i, 

j, k, l =1,2,3 passes through three axes of arbitrary coordinate system. Unknown variables in such formulated 
boundary-value problem are displacement vector 𝑢 and scalar potential 𝜙.  Eq (1) represents strong 
formulation of the problem. The weak formulation usually used for obtaining numerical solution may be 
obtained by multiplying the differential equations governing the problem with weight functions, and 
integrating over the solution domain. In case of piezoelectric PDE expressed by first two equations of Eq. 
(1) it leads to [11]: 
 

−𝜔2𝜌𝑝 ∫ 𝑣𝑖𝑢𝑖Ω𝑝
𝑑Ω = ∫ 𝑣𝑖𝑇𝑖𝑗,𝑗Ω𝑝

𝑑Ω    (= ∫ 𝑣𝑖𝑇𝑖𝑗𝑛𝑗Γ𝑝
𝑑Γ − ∫ 𝑆𝑖𝑗(𝑣𝑖)𝑇𝑖𝑗Ω𝑝

𝑑Ω)

(∫ 𝑤
Γ𝑝

𝐷𝑖𝑛𝑖𝑑Γ + ∫ 𝐸𝑖(𝑤)
Ω𝑝

𝐷𝑖𝑑Ω =) ∫ 𝑤𝐷𝑖,𝑖Ω𝑝
𝑑Ω = 0

 (2) 
 

where  Ω𝑝 represents a volume of piezoelectric disc, 𝑛𝑖  - normal vector, whereas 𝑣𝑖  for i=1,2,3 - weight 

functions for displacement components and 𝑤 - for potential. The weight functions are arbitrary except 
boundary where they needs to be equal to zero.   The expressions in parentheses are obtained using 

integration by parts and allows including conditions on the boundary Γ𝑝. Furthermore, for axisymmetric 

problem as illustrated in Fig.1 the analysis could be reduced to two dimensions with radial and axial 
coordinates.  Additionally, when piezoelectric material have hexagonal structure (10 independent 
linearizing coefficients) the last two equations of Eq. (1) can be expressed in circular coordinate system in 
matrix form (with relabeling tensor coefficients into two indices) as follows: 
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Fig. 1. Domain of calculation  Sp as the half of a cross-section of whole domain p for axisymmetric 
problem as used for sample piezoelectric disc (a – disc radius, l – its thickness, V0 , V1 – electrode 

potentials, 1,2,3,4 – labels of boundary p). 
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    where [𝐶] =
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= 𝐿 ([

𝑢𝑟

𝑢𝑧

𝜙
]) (3) 

 

[C] matrix introduced in Eq. (3) represents generalized stiffness matrix for the piezoelectric problem. 
Combining unknown variables 𝑢𝑟 , 𝑢𝑧, 𝜙 to form a vector and assuming the case of free vibration (without 
external load on boundaries) Eq. (2) may be expressed as: 
 

∫ 𝜔2𝜌𝑝 [
𝑣𝑟

𝑣𝑧
]
𝑇

[
𝑢𝑟

𝑢𝑧
]

𝑆𝑝

𝑑𝑆𝑝 − ∫ 𝐿 ([
𝑣𝑟

𝑣𝑧

𝑤
])

𝑇

[𝐶]   𝐿 ([

𝑢𝑟

𝑢𝑧

𝜙
])

𝑆𝑝

𝑑𝑆𝑝 = 0   (4) 

 

where Sp represents now cross-section surface of a disc and L( ) operator defined in Eq. (3) could be 
interpreted as a derivative operator of the piezoelectric problem expressed in cylindrical coordinates. 

4. Software implementation 

FreeFEM language implementing finite element solver - beside typical numerical types - contains definitions 
of special types like mesh for definition of surfaces and/or volumes of a problem, vespace for a definitions 

of variational variables and solve for solution of a problem. It introduces functions like int1d,int2d 

and int3d that implements numerical integration that allows for natural definition of integral equation 

and on function - for the definition of Dirichlet boundary conditions.  

The example code modelling the free vibrations of circular piezoelectric disk with diameter of 2.5cm and 
thickness of 1cm (D/T=2.5) is presented in Fig. 2. The code implements Eq. (4) with definitions from Eq. (3) 
nearly in a straightforward way. The variational equation (4) is defined  in lines 38-43 using derivative 
operator L(.) which is earlier defined in the form of macro (lines 28-29) and coefficient matrix [C] defined 
in the form of func type (lines 20-25). Note that there is also natural way of defining derivatives using 

dx() and dy() functions (line 29). The boundary conditions corresponds to exciting one electrode with a 
voltage of 500V (lines 41-42). One additional condition is related to axisymmetry, which enforces lack of 
radial displacement on axis of symmetry (line 43).  The matrix elements (lines 16-18) represents coefficient 
values without losses for PZT5A material, what makes the problem to be real valued.  The volume of 
integration for axisymmetric case is reduced to surface and for disk shape could be defined as a mesh 

containing the output result of square function with its horizontal dimension equal to the half of diameter 

in first (r) coordinate and its thickness in second (z) coordinate. Two other parameters of this function 
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defines the size of the mesh. In the example the size is rather coarse having only 15x12 grid points. This 
could be easily changed for more accurate analysis as the accuracy of solution depends mainly on mesh 
density. Precise calculation with larger domain and larger grids are more time-consuming and may require 
parallel supercomputer environments as a computing platform.  The results of executed code are presented 
in Fig. 3. The plot function makes the visualisation of mesh grid representing the displacement amplitude 

overlaid with false coloured values of potential in disc cross-section. The analysis was performed in ten 
frequencies below thickness mode (defined in line 5) which were selected on purpose to illustrate the 
change of potential field inside material near five different modes: two first radial modes R1 and R2 (Figs. 
3a, 3b and Fig. 3c, 3d), edge mode E (Figs. 3e, 3f), thickness shear mode TS1 (Figs. 3g, 3h) and first thickness 
extension mode TE1 (Figs. 3i, 3j).  The solution contained in ur, uz and  variables allows for further 
calculations of all values of interest according to Eq. (3). The aperture vibration are accessible by taking uz 
values on border labelled 3. It is worth to mention, that for coarse grids the modal frequencies are not 
precisely determined and increasing the grid size will gradually allow assigning its proper values. These 
frequencies obtained by 15x12 grid may vary from  those obtained by fine grids by 3kHz for presented case 
study. 

 

Tab 1. The values of PZT5A material constants as used in the case study. 

𝜌𝑝 𝑐11
𝐸  𝑐12

𝐸  𝑐13
𝐸  𝑐33

𝐸  𝑐44
𝐸  𝑒31 𝑒33 𝑒15 𝜖11

𝑆  𝜖33
𝑆  

7750
𝑘𝑔

𝑚3 120
𝐺𝑁

𝑚2
 75.2

𝐺𝑁

𝑚2 75.1
𝐺𝑁

𝑚2 110
𝐺𝑁

𝑚2 21.1
𝐺𝑁

𝑚2 -5.4 
𝐶

𝑚2 15.8 
𝐶

𝑚2 12.3 
𝐶

𝑚2 8.1 
𝑛𝐹

𝑚
 7.3 

𝑛𝐹

𝑚
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Fig. 2. Example of FreeFEM code modelling free vibrations of voltage excited piezoelectric circular disk as 
a 2D axisymmetric PDE problem. 



 

6 of  7 

Vibrations in Physical Systems, 32(1):2021112, 2021 DOI: 10.21008/j.0860-6897.2021.1.12 

 

Fig. 3. The result of FreeFEM code execution – the structure vibrations with overlaid potential for selected 
pair of frequencies: 72kHz and 73kHz, 128 kHz and 129 kHz, 157kHz and 158 kHz,  164 kHz and 165 kHz, 

189 kHz and 190 kHz of a PZT5A circular disc with D/T=2.5. The top of rectangular area represents 
aperture vibration, that is symmetric around disc axis (y-axis).  The false colours represents potentials 

inside the disc that arise between bottom grounded electrode and top electrode excited with 500V.   

a)  f0 =72 kHz b)  f0 =73 kHz 

c)  f0 =128 kHz d)  f0 =129 kHz 

e)  f0 =156 kHz f)  f0 =157 kHz 

g)  f0 =164 kHz h)  f0 =165 kHz 

i)  f0 =189 kHz j)  f0 =190 kHz 
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4. Conclusions  

Programmable finite analysis platforms open new opportunities for researchers. The language presented 
in the paper developed as a scripting language of FreeFEM open software delivers unique possibilities to 
automate scientific analysis. Due to its implementation based for C++ language it guarantees very fast 
execution speed allowing at the same time for high level description very similar to mathematical notation 
used in defining integral formulation of partial differential equations. Its usage in analysis of vibration of 
piezoelectric devices is nearly straightforward. The sample code presented in the paper could be treated as 
a starting point for further more realistic models of piezoelectric devices operating in concrete systems. 
Some of the actual properties of devices require losses of material and specific boundary condition be taken 
into account, what generate complex valued problems with more integral components. In any case, due to 
properties of FreeFEM language the details of complicated finite element calculations are not necessary to 
be considered.  
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